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ABSTRACT 
 
 
The absence of common software platforms for Autonomous Underwater Vehicle 

(AUV) mission planning and analysis is an ongoing impediment to collaborative work 

between research institutions, their partners, and end users.  This thesis details the design 

and implementation of a distributable application to facilitate AUV mission planning and 

analysis.  Java-based open-source libraries and a component-based framework provide 

diverse functionalities. The extensible Markup Language (XML) is used for data storage 

and message exchange, Extensible 3D (X3D) Graphics for visualization and XML 

Schema-based Binary Compression (XSBC) for data compression. The AUV Workbench 

provides an intuitive cross-platform-capable tool with extensibility to provide for future 

enhancements such as agent-based control, asynchronous reporting and communication, 

loss-free message compression and built-in support for mission data archiving. 

This thesis also investigates the Jabber instant messaging protocol, showing its 

suitability for text and file messaging in a tactical environment.  Exemplars show that the 

XML backbone of this open-source technology can be leveraged to enable both human 

and agent messaging with improvements over current systems.  Integrated Jabber instant 

messaging support makes the NPS AUV Workbench the first custom application 

supporting XML Tactical Chat (XTC).  

 Results demonstrate that the AUV Workbench provides a capable testbed for 

diverse AUV technologies, assisting in the development of traditional single-vehicle 

operations and agent-based multiple-vehicle methodologies.  The flexible design of the 

Workbench further encourages integration of new extensions to serve operational needs.  

Exemplars demonstrate how in-mission and post-mission event monitoring by human 

operators can be achieved via simple web page, standard clients or custom instant 

messaging client.  Finally, the AUV Workbench’s potential as a tool in the development 

of multiple-AUV tactics and doctrine is discussed. 
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I. INTRODUCTION 

A. PROBLEM STATEMENT  
The lack of common software tools for Autonomous Underwater Vehicle (AUV) 

mission planning and analysis is an ongoing impediment to collaborative work between 

research institutions, their partners, and end users.  Current proprietary software solutions 

have a myopic view on the capability of AUVs.  Most place too much emphasis on single 

and relatively simple AUV operations.  A common software development and mission 

evaluation platform will not only facilitate modeling and simulation of AUVs, but it will 

aid in the introduction of complex multi-agent systems to try out and answer more 

challenging questions. Longer-term needs such as the development of AUV concept of 

operations and collaborative sensing between vehicles can be achieved. 

A common and flexible platform will facilitate the transition from simulation to 

actual operations. 

 

B. OVERVIEW 
This thesis details the design and implementation of a common platform to 

facilitate AUV mission planning, visualization and analysis.  The end product is capable 

of handling the various phases of a mission.   An important component is the definition 

and use of a common AUV mission control script.  The control script defines the AUV 

commands that are similar to the low-level execution commands that are used by the 

actual AUV hardware. 

Using Java-based open-source libraries for functionality, Extensible Markup 

Language (XML) for data storage [Serin 2003] and exchange, and a component-based 

framework, the AUV Workbench provides an intuitive cross-platform-capable tool with 

extensibility to provide for future enhancements such as agent-based control, 

asynchronous reporting and communication, and loss-free message compression.  As a 

collaboration environment, it is important that communication channels and tools are  
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easily available for developers and users to communicate.  Jabber instant messaging is 

selected as it is based on open-source Extensible Message and Presence Protocol (XMPP) 

[XMPP 2004]. 

In addition, this thesis investigates the Jabber instant messaging protocol and 

discusses its suitability for text and file messaging in a tactical environment.  Exemplars 

show that the XML backbone of this open-source technology can be leveraged to enable 

both human and agent messaging with improvements over current systems. 

 

C. MOTIVATION 
One motivating factor is to support the current research efforts at NPS and with 

partners such as Singapore Defence Science Organization (DSO).  Similar partner 

relationships are occurring with other AUV laboratories. A componentized framework 

using open-source software and open-standards technologies is presented to support 

collaborative development. The ultimate goal of software components is to fuse the use 

of different pieces of software into one smoothly operating package.  The end product 

facilitates collaboration and continued research development between the two research 

entities.   

A well-designed and well-documented system promotes knowledge sharing and 

retention.  Ease of use and user interface design is important issues that will determine 

whether it gains user acceptance.  Usability should not be considered as an afterthought.  

Ultimately user acceptance aids the transition of a modeling and simulation (M&S) tool 

into a system that meets operational needs. 

A further long-term motivation is to develop a common platform that can be 

extended to become a Sensor Workbench and also support agent research and 

development.  Much important work awaits; that is otherwise impossible without such a 

dedicated tool.  In many respects, the NPS AUV Workbench is the culmination of many 

technical threads carrying to fruition that were first initiated as part of the NPS AUV 

Underwater Virtual World. [Brutzman 1994] 
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D. OBJECTIVES 
The primary focus of this thesis is on the design and implementation of a common 

platform for AUV mission planning and analysis through the use of Open-source 

software and tools.  In addition, this thesis addresses the following research questions: 

• What are the open-source tools and open-standards technologies available 

to facilitate development of a collaborative platform for AUV mission 

planning and visualization? 

• What constitutes an AUV XML-based mission control script? 

• Can the mission control script be graphically represented? 

• How can open-standards technologies be leveraged to design and 

implement a message exchange system that can support both human and 

machine communications? 

• Can Jabber be used for machine-to-machine communications; e.g., for 

self-validating agent-to-agent messaging? 

• Can binary files be transported via Jabber instant messaging protocol? 

• Can Jabber instant messaging together with HTTP, serve as a reliable 

means for the transfer of textual and binary data? 

 

E. THESIS ORGANIZATION 
This first chapter identifies the purpose and motivation behind conducting this 

research and establishes the goals for the thesis.   Chapter II discusses similar research 

and provides general background information to the concepts and set of tools and 

technologies employed in this thesis.  Chapter III examines the design and 

implementation of the various modules that make up the AUV Workbench application.  

Chapter IV discusses the use of Jabber instant messaging protocol for message exchange 

of textual and files.  It provides an exemplar on how event monitoring can be 

implemented.   Chapter V analyzes the software design of AUV agents.  Chapter VI gives 

a summary of the conclusions and recommendations for future work.  The future work 

section lists eleven specific areas where this thesis can be extended. The appendices 
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present information on the programming source code produced and system installation in 

conjunction with this thesis.  All source code and model content are provided online and 

in Appendix C. 
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II. BACKGROUND AND RELATED WORK 

A. INTRODUCTION 
This chapter briefly discusses the technologies and tools leveraged in the conduct 

of this thesis.  An overview on the open-source tools and open-standards technologies 

employed is given.   This chapter also summarizes pertinent previous work on the current 

NPS AUV and its virtual world software. Further explanation and study of the topics may 

be found in the list of references at the end of this thesis. 

 

B. DATA REPRESENTATION AND MANIPULATION USING XML 
Data is only as good as the way it is packaged.  Information is a valuable asset, 

but its value depends on its longevity, flexibility, and accessibility.  Traditionally, data is 

represented in a simple text-based format (see Table 1).  The main disadvantage of such 

an approach is that it is likely to introduce ambiguity in how the data is captured, 

resulting in additional effort to write a robust parser to handle the ambiguity.  This parser 

has to handle case-sensitivity (“WAYPOINT” is not the same as “Waypoint”) and 

potential variations in user input (e.g., “WAYPOINT” and “WAYPOINT-ON” refer to 

the same information).  This added logic slows down (and may confuse) in-water 

processing time. 

WAYPOINT    #X #Y [#Z]  [#rpm] 
WAYPOINT-ON #X #Y [#Z]  [#rpm]  
   Point towards waypoint with coordinates (#X, #Y) 
   (depth #Z optional) (speed  #rpm optional).  You can 
   leave waypoint control by ordering course, rudder,  
   sliding-mode, rotate or lateral thruster control. 
 
                  If speed is < 200 RPM, port & starboard RPMs are  
                  increased to  400 RPM to ensure waypoint can be  
                  achieved. 
 
                  If in TACTICAL mode, execution reports STABLE when 
   waypoint is achieved. 
 

Table 1. Description of text-based command for Waypoint orders.  Extracted from 
mission.script.HELP [Brutzman 1994]. 
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The World Wide Web Consortium’s (W3C’s) XML Working Group developed 

Extensible Markup Language (XML) in 1996. XML evolved out of the earlier Standard 

Generalized Markup Language (SGML), HyperText Markup Language (HTML), and the 

earliest presentation markup language.  XML documents contain only data, not 

formatting instructions.   XML is an open standard and its extensibility allows it to 

markup virtually any type of information. XML is a simple, standard way to interchange 

structured textual data between applications.  It is also readable and writable by humans, 

using a simple text editor. 

Some examples of XML languages are Extensible HyperText Markup Language 

(XHTML), Sensor Markup Language (SensorML) for sensors [SensorML], Defense 

Advanced Research Projects Agency (DARPA) Agent Markup Language (DAML) for 

agents [DAML], Geography Markup Language to describe geographic information 

[GeoML], MathML for mathematics [MathML], and Chemical Markup Language (CML)  

[CML].  A list of XML-based data representation can be found at http://www.xml-

acronym-demystifier.org/xmlad.html (Accessed February 2004).  The design goals for 

XML are shown in Table 2 below. 

Point Goal 

1. XML shall be straightforwardly usable over the Internet. 

2. XML shall support a wide variety of applications. 

3. XML shall be compatible with SGML. 

4. It shall be easy to write programs that process XML documents. 

5. The number of optional features in XML is to be kept to the absolute minimum, ideally 
zero. 

6. XML documents should be humanly legible and reasonably clear. 

7. The XML design should be prepared quickly. 

8. The design of XML shall be formal and concise. 

9. XML documents shall be easy to create. 

10. Terseness in XML markup is of minimal importance. 

Table 2. XML Design Goals (after W3C, 2003). 
 
1. Removing Ambiguity Through Namespaces 

Namespace is a mechanism by which element and attribute names can be assigned 

to groups.  They provide means for document authors to prevent ambiguity and are most 

often used when combining different vocabularies in the same document.  Namespace 
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identifiers have to be assigned some kind of unique identifiers.  They are, by convention, 

assigned to the Uniform Resource Locator (URL) subset of Uniform Resource Identifiers 

(URIs), not the more abstract Uniform Resource Names (URNs).  However, this is not a 

requirement, since the XML parser does not actually look up any information located at 

that URL. 

 

2. Defining the XML Document Structure 
An XML document can optionally reference a document that defines the 

document structure and data type.  This document can either be represented as Document 

Type Definition (DTD) or a schema.  DTDs were originally developed for XML’s 

predecessor, SGML. They use a compact syntax and provide document-oriented data 

typing. XML DTDs are a subset of those available in SGML, and the rules for using 

XML DTDs provide much of the complexity of XML 1.0.  

XML Schema is an XML-based alternative to DTD.  The XML Schema language 

is also referred to as XML Schema Definition (XSD).  XSD expresses shared 

vocabularies and allows machines to carry out rules made by people. It provides a means 

for defining the structure, content and semantics of XML documents [Schema 2004].   

Through the use of a schema or DTD, the XML document can be validated (i.e., 

checked for conformity) as it is parsed.  If the XML document follows the DTD or 

schema, it is valid.  If an XML parser can successfully parse an XML document, it means 

that the document is syntactically correct (well-formed). Therefore a valid XML 

document is also well-formed. 

DTDs are not XML documents (See Figure 1).  This makes them difficult to 

programmatically manipulate.  A DTD describes an XML document’s structure but not 

the format of the individual elements.  In 1999, the W3C began to develop XML 

Schemas in response to the growing need for a more advanced format for describing 

XML documents. XML Schemas reached recommendation status in May 2001.  

<!—Command the vehicle to transit to a specified location. --> 
<!ELEMENT Waypoint EMPTY> 
<!—List of attributes --> 
<!ATTLIST Waypoint x CDATA><!—CDATA indicates character data --> 
<!ATTLIST Waypoint y CDATA> 
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Figure 1.   Sample DTD defining a Waypoint element with two attributes “x” and “y”. 

 

<xsd:element name=”Waypoint”> 
   <xsd:annotation> 
      <xsd:appinfo>Command the vehicle to transit to a specified 
location. Vehicle will not stop when location reached.</xsd:appinfo> 
   </xsd:annotation> 
   <xsd:complexType> 
      <xsd:attribute name=”x” type=”xsd:decimal” use=”required”/> 
      <xsd:attribute name=”y” type=”xsd:decimal” use=”required”/> 
      <xsd:attribute name=”z” type=”xsd:decimal” use=”required”/> 
      <xsd:attribute name=”rpm” type=”xsd:decimal” use=”optional”/> 
   </xsd:complexType> 
</xsd:element> 

Figure 2.   Sample XSD on Waypoint element. 

 

 

 

S/N Functionality Document Type Definition XML Schema 

1. Syntax Extended Backus Naur form. XML format. 

2. Namespaces Not fully supported. Enables the definition of 
vocabularies that utilize 
namespace declarations. 

3. Data Types Text only. No constraint 
checking. 

Simple or complex with 
constraint checking; e.g., 
numbers within a certain range, 
positive numbers or dates. 

4. Entity Declaration Yes Yes 

5. Providing defaults for 
attributes 

Yes Yes 

6. Support embedded 
declaration 

Yes No 

7. Parser support Readily supported by most 
parsers. 

Supported by a few open-
source parsers (Castor 
http://www.castor.org, 
accessed on February 2004) 

Table 3. Comparison of DTD and XSD. 

 

 

 



9 

 

 

3. Transforming XML Documents 
As the name implies, Extensible Stylesheet Language (XSL) is intended to define 

the formatting and presentation of XML documents for display. The first proposal for 

XSL was dated 21 August 1997 [XSL 2004]. 

XSL Transformations (XSLT) is a language designed for transforming XML 

documents into other XML documents [XSL 2004]. Just as XML was derived from 

SGML, XSLT has its origins in an SGML-based standard, Document Style Semantics 

and Specification Language (DSSSL).  A transformation expressed in XSLT describes 

rules for transforming a source tree into a result tree. The transformation is achieved by 

associating patterns with templates. A pattern is matched against elements in the source 

tree. A template is instantiated to create part of the result tree. The result tree is separate 

from the source tree. The structure of the result tree can be completely different from the 

structure of the source tree. In constructing the result tree, elements from the source tree 

can be filtered and reordered, and arbitrary structure can be added. A transformation 

expressed in XSLT is called a stylesheet.   

XSLT is designed for use as part of XSL, which is a stylesheet language for 

XML. XSL specifies the styling of an XML document by using XSLT to describe how 

the document is transformed into another XML document that uses the formatting 

vocabulary. XSLT is designed to work independently of XSL. The dominant feature of 

XSLT is that it is declarative. It produces an output when a particular pattern (based on a 

set of non-sequential template rules) occurs in the input.  This is opposed to a procedural 

program where the tasks are defined in the order they are supposed to perform. Apache 

Xalan is a Java-based open-source XSLT processor [Xalan 2004] that is used in this 

thesis. 

The basic relationship between an XML document with XSL and XSD is 

illustrated in Figure 3. 
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Figure 3.   Relationship of Parsing, Validating and Transforming an XML document. 

 

C. 2D AND 3D GRAPHICS REPRESENTATION 

1. Scalable Vector Graphics (SVG) 
SVG is a language for describing two-dimensional graphics and graphical 

applications in XML. It was created by the World Wide Web Consortium (W3C), the 

non-profit, industry-wide, open-standards consortium that created HTML and XML, 

among other important standards and vocabularies. SVG allows for three types of graphic 

objects: vector graphic shapes (e.g., paths consisting of straight lines and curves), images 

and text. Graphical objects can be grouped, styled, transformed and composited into 

previously rendered objects. Text can be in any XML namespace suitable to the 

application, which enhances searchability and accessibility of the SVG graphics. The 

feature set includes nested transformations, clipping paths, alpha masks, filter effects, 

template objects and extensibility.   As an XML grammar, SVG offers all the advantages 

of XML. SVG graphics can easily be generated on Web servers "on the fly," using 

standard XML tools, many of which are written in the Java programming language 

[SVG 2004].  
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SVG drawings are dynamic and interactive. The Document Object Model (DOM) 

for SVG, which includes the full XML DOM, allows for straightforward and efficient 

vector graphics animation via scripting. A rich set of event handlers such as onmouseover 

and onclick can be assigned to any SVG graphical object. Because of its compatibility 

and leveraging of other Web standards, features like scripting can be done on SVG 

elements and other XML elements from different namespaces simultaneously within the 

same Web page.  

SVG 1.1 is a W3C Recommendation and forms the core of the current SVG 

developments. SVG 1.2 is the specification currently being developed.   

<svg width="360" height="120"> 
   <rect x="0" y="0" width="100%" height="100%" fill="lightgray"/> 
   <g id="sampleLogo" transform="translate(5, 5)"> 
       <rect fill="#ff3366" width="155" height="70"/> 
       <image xlink:href="sample.svg" x="15" y="15"  
        width="120" height="40" /> 
   </g> 
   <rect fill="#3366ff" x="165" y="5" width="180" height="70"/> 
   <rect fill="#FFFF00" x="10" y="80" width="335" height="35"/> 
 
   <g font-family="SunSansCondensed-Heavy" fill="black"  
    font-size="20" stroke="white" > 
      <text x="20" y="70" stroke="none" >NPS AUV Workbench</text> 
   </g> 
</svg> 

Figure 4.   A simple SVG code snippet. 
 

 
Figure 5.   Graphical representation of the above SVG code. 

 

2. Virtual Reality Modeling Language (VRML) 
The Virtual Reality Modeling Language (VRML) is am International Standards 

Organization (ISO) standard for defining 3D virtual worlds through the use of a 

structured text file, such as depicted in Figure 6.  The text files are typically small and are 

ideal for transmission over the Internet.  VRML files typically contain four main types of 

components; header, prototypes, shapes and routes. VRML virtual worlds are rendered 
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using specialized viewers that read the VRML text files and render the content defined in 

the file, (e.g., ParallelGraphics Cortona VRML Client 4.2 at 

http://www.parallelgraphics.com accessed on February 2004).  These viewers are 

installed as Internet browser plug-ins.  There are also several open-source VRML viewers 

available on the Internet, such as Xj3D [XJ3D 2004].   

#VRML V2.0 utf8 
NavigationInfo { 
  type [ "EXAMINE" "ANY"  ]  
} 
Shape { 
  appearance Appearance { 
    material Material { 
      diffuseColor 0 0 1 
    } 
  } 
  geometry Box { 
    size 1 0.5 1 
  } 
} 

Figure 6.   Contents of VRML file for a 1m by 0.5m by 1m blue box. 

 

 
Figure 7.   Rendering of the 1m by 0.5m by 1m blue box defined in Figure 6 using Internet 

Explorer and the Cortona VRML plug-in.  User has rotated the scene for a custom 
viewpoint location and orientation. 
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3. Extensible 3D (X3D) Graphics 
X3D Graphics is the next generation of the Virtual Reality Markup Language 

1997 (VRML97) 3D graphics format for the Internet.  X3D has been developed with an 

open-source sample implementation for specification implementation and evaluation 

along with support from major industry players in 3D content development for the 

Internet.  Since the format is XML based, it can also take advantage of the benefits of 

XML through the use of XSLT stylesheets to view the same content rendered in 

VRML97, HTML or with direct rendering of the XML-based tree structure in an open-

source browser implementation such as Xj3D [XJ3D 2004].   

 

4. Xj3D 3D Display Library 
Xj3D is the open-source rendering implementation for the X3D graphics standard 

[XJ3D 2004]. It is “a Java-based toolkit developed by Yumetech that allows companies 

to rapidly support X3D.”[X3D 2002] The Web3D Consortium has also formed the Java 

Rendering Working Group consisting of members from Media Machines Inc. Anaviza 

Inc., Sun Microsystems, and Yumetech that are concurrently working on the definition 

and implementation of bindings for various common graphical API’s such as OpenGL® 

and Direct3D™. Upon completion, this implementation will make the specific graphics 

rendering context of X3D graphics agnostic and this less vulnerable to the commercial 

“ups and downs” of the market place or consumer popularity. 

 

D. JABBER AND EXTENSIBLE MESSAGING AND PRESENCE 
PROTOCOL (XMPP)  

Jabber is a set of streaming XML protocols and technologies that enable any two 

entities on the Internet to exchange messages, presence, and other structured information 

in close to real time. The first Jabber application is an instant messaging (IM) network 

that offers functionality similar to legacy IM services such as AIM, ICQ, MSN, and 

Yahoo. However, Jabber is more than just IM, and Jabber technologies offer several key 

advantages [Jabber 2004]: Jabber protocols are free, open, public, and easily 
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understandable; in addition, multiple implementations exist for clients, servers, 

components, and code libraries.   

First developed by Jeremie Miller in 1998, Jabber is becoming a stable and 

proven piece of technology. The architecture of the Jabber network is similar to email; as 

a result, anyone can run their own Jabber server, enabling individuals and organizations 

to take control of their IM experience.  Robust security using Simple Authentication and 

Security Layer (SASL) and Transport Layer Security (TLS) has been built into the core 

XMPP specifications. 

Using the power of XML namespaces, it is extensible in that anyone can build 

custom functionality on top of the core protocols; to maintain interoperability, common 

extensions are managed by the Jabber Software Foundation.  Jabber-enabled applications 

are more than IM. These include network management, content syndication, 

collaboration tools, file sharing, gaming, and remote systems monitoring. 

With a wide range of companies and open-source projects using the Jabber 

protocols to build and deploy real-time applications and services; there is no technology 

“locked in” as compared to proprietary tools or technologies. 

The Extensible Messaging and Presence Protocol (XMPP) is a general purpose 

protocol not necessarily limited to instant messaging and presence [XMPP 2004].  XMPP 

is a revision of the communication portion of the widely deployed Jabber protocol. 

XMPP is a TCP-based protocol that uses Extensible Markup Language (XML) as the 

syntax for its protocol elements. XMPP can be used as a client-to-server protocol as well 

as a server-to-server protocol. The base of the protocol exchange is the XML “stream", 

effectively a stream of XML data sent from one party to the other which starts with an 

XML <stream> tag and ending with an XML </stream> tag. Streams are unidirectional, 

so communication between two parties requires two separate streams (though they can 

run over the same full-duplex connection). Within the stream, Requests and Responses 

are exchanged between the two parties in XML “stanzas”, a portion of the stream that has 

semantic content. The document describes the routing of stanzas from machine to 

machine through streams. XMPP includes guidelines to ensure that extensions are 

possible without conflicts or breaking core interoperability. Lack of conflicts is ensured 
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with use of XML namespaces. Interoperability is ensured with careful layering of stanzas 

of known types, on top of the base stream.   

The Internet Engineering Task Force (IETF) has formalized the core XML 

streaming protocols as an approved instant messaging and presence technology under the 

name of XMPP, and the XMPP specifications are moving forward rapidly within the 

IETF's standards process (http://www1.ietf.org/mail-archive/ietf-

announce/Current/msg28170.html accessed 29 January 2004) 

 

E. OPEN-STANDARD TECHNOLOGIES AND OPEN-SOURCE 
SOFTWARE 
Open-source software is freely available for any use, including modification and 

redistribution. The first formal statement of the official Open Source definition appeared 

in 1997 by Bruce Perens [OSI 2002]. This definition has continued to be refined and 

maintained by the Open Source Initiative (OSI), a non-profit corporation. [OSI 2004] 

Developers have a say in how open source are designed and are free to use what works 

for them, rather than be tied to a particular proprietary package.  The plethora of open 

standards and open source components has shown that this approach is a viable one. 

Open source products and tools are based on the premise that the programming 

source code is freely available to anyone who wishes to read, add to, or even modify and 

redistribute the computer software code.  Thus “free” refers primarily to “freedom to use 

and modify”. 

The list of open source libraries used in the AUV Workbench application is given 

in Table 4. 

S/N Library Version Description Library Files 

1. Apache Ant 1.6.0 Java-based build tool. ant.jar, optional.jar, xercesImpl.jar, 
xml-apis.jar 

2. Apache SOAP 2.3.1 Base-64 encoding and 
decoding. 

soap.jar 

3. Apache Xerces 2.5.0 XML parsing. xmlParserAPIs.jar, xml-apis.jar, 
xercesImpl.jar   

4. Apache Xalan 2.5.0 XML transformation, xalan.jar 

5. Batik  1.5.0 A Java based toolkit for apps 
that want to use images in 

batik-awt-util.jar, batik-bridge.jar, 
batik-css.jar, batik-dom.jar, batik-
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S/N Library Version Description Library Files 

the SVG format for viewing, 
creation and manipulation. 

ext.jar, batik-gvt.jar, batik-
parser.jar, batik-script.jar, batik-
svg-dom.jar, batik-svggen.jar, 
batik-swing.jar, batik-util.jar, batik-
xml.jar, js.jar 

6. Extensible Java 
3D 

M8 Display of 3D VRML and X3D 
models 

aviatrix3d-all.jar, gnu-regexp-
1.0.8.jar, httpclient.jar, j3d-org-
images.jar, j3d-org.jar, Jama.jar, 
js.jar, JXInput.jar, uri.jar, 
vlc_uri.jar, vrml97.jar, xj3d-all.jar 

7. Jivesoftware 
SMACK APIs 

1.2.1 XMPP communications.   smack.jar, smackx.jar. 

8. dis-java-vrml - Distributed Interactive 
Simulation. 

dis-java-vrml.jar 

Table 4. Open source libraries used in the development of AUV Workbench application. 

 

F. PROGRAMMING LANGUAGE AND DEVELOPMENT ENVIRONMENT 
The Java Programming Language by Sun Microsystems is the primary language 

used for this thesis [JDK142].  With Java, numerous commercial and open-source tools, 

notably Jakarta Apache at http://jakarta.apache.org (accessed February 2004) are 

available. 

The choice to use Borland’s JBuilder 7.0 Enterprise (NPS Education Edition) for 

development of the AUV Workbench was largely based on the author’s familiarity with 

Borland’s Integrated Development Development (IDE) from the use of Borland’s Object 

Pascal, Delphi.  The edition of Java used is Java 2 Standard Edition (J2SE) JDK1.4.2. 

There is no dependency on any particular IDE for development of the NPS AUV 

Workbench.  The NetBeans and Eclipse IDEs are both open source and good no-cost 

alternatives. 

Most IDEs provide tools to easily design a user interface and automatically 

generate the interface code.  This comes at the expense of over-dependence on a 

particular IDE and likely to pose problems when the user interface needs to be amended 

on another IDE. Therefore the design and implementation of the AUV Workbench 

graphical user interface is coded from scratch, instead of using JBuilder’s Graphical User 

Interface (GUI) Designer.   
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The following sections provide a brief description on some of the IDEs currently 

available, consisting of both commercial (e.g., Borland JBuilder) and open-source tools 

such as NetBeans and Eclipse. 

 

1. JBuilder 
JBuilder uses one window to perform most of the development functions: editing, 

visual designing, navigating, browsing, compiling, debugging, and other operations. This 

window is called the AppBrowser, and it contains several panes for performing these 

development functions. The tabbed panes that are available in the content pane depend on 

what kind of file is selected in the project pane. 

 
Figure 8.   Borland JBuilder 7.0 application user interface running on Windows XP platform.  

 



18 

 
Figure 9.   CodeInsight feature running in Borland JBuilder 7.0.  This feature displays 

context-sensitive pop-up windows to facilitate code completion. 
 

2. Eclipse 
Eclipse is an open-source software development project dedicated to providing a 

robust, full-featured, commercial-quality, industry platform for the development of highly 

integrated tools. It is composed of three projects, the Eclipse Project, the Eclipse Tools 

Project and the Eclipse Technology Project (http://www.eclipse.org accessed January 

2004.).  It is composed of three subprojects: Platform, Java Development Tools (JDT), 

and Plug-in Development Environment (PDE). 

The Eclipse Tools Project provides a focal point for diverse tool builders to 

ensure the creation of best of breed tools for the Eclipse Platform. The mission of Eclipse 

Tools Project is to foster the creation of a wide variety of tools for the Eclipse Platform. 

The Tools project provides single point of coordination for open-source tool developers 

in order to minimize overlap and duplication, ensure maximum sharing and creation of 

common components, and promote seamless interoperability between diverse types of 

tools.  
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The Eclipse Platform is an open extensible IDE. The Eclipse Platform provides 

building blocks and a foundation for constructing and running integrated software-

development tools. The Eclipse Platform allows tool builders to independently develop 

tools that seamlessly integrate with other people's tools. 

The Eclipse SDK (software developer kit) is the consolidation of the components 

produced by the three Eclipse Project subprojects (Platform, JDT - Java development 

tools, and PDE - Plug-in development environment) into a single download. 

 

 
Figure 10.   Eclipse SDK 3.0 Stream Stable Build user interface running on Windows XP 

platform. 
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Figure 11.   CodeAssist feature running in Eclipse. This feature displays context-sensitive 

pop-up windows to facilitate code completion. 
 
 
3. NetBeans 
The NetBeans platform is an application runtime - a "generic large desktop 

application." NetBeans Integrated Development Environment (IDE) comprises the 

platform and modules such as an editor, tools for working with source code (e.g., Java 

and C++) and version control.  The IDE has advanced syntax highlighting and an error 

checking code editor that supports Java, C, C++, XML and HTML languages. Some of 

the features of the platform are (http://www.netbeans.org accessed January 2004):  

• User interface management - Windows, menus, toolbars and other 

presentation components are provided by the Platform. Developers write 

to a set of abstractions such actions and components, saving time and 

producing cleaner, more bug-free code. Custom components and 

behaviors can be written, but for most cases this is not needed.  

• Data and presentation management - The NetBeans Platform contains a 

rich toolset for presentating data to the user and manipulating that data.  
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• The Editor - Available as an extension to the Platform, applications built 

on NetBeans can use the NetBeans Editor, a powerful and extensible 

toolset for building custom editors.  

• Setting management - The NetBeans Filesystems infrastructure abstracts 

file-based data. Files may exist locally or remotely, on FTP or CVS 

servers or in a database; access to them is transparent to module code that 

works with files. The Platform can be extended to support new forms of 

storage. Applications built on NetBeans are Internet-ready. 

• The Wizard framework - a toolset for easily building extensible, user-

friendly Wizards to guide users through more complex tasks.  

• Configuration management - Rather than tediously write code to access 

remote data and manage and save user-configurable settings, etc., all of 

this is handled by the Platform. Applications consist of the platform and 

the logic code important to that application.  

• Storage management - An abstraction of file-based data access. "Files" in 

the NetBeans paradigm may be local files, or exist remotely, for example, 

on an FTP server, CVS repository or in a database. Where this data is 

stored is completely transparent to other modules that work with this data.  

• Cross-platform - since the Platform is written entirely in the Java 

language, applications based on it, by their very nature, will run on any 

operating system with a Java 2 compatible (1.3 or greater) JVM.  

The IDE has a dynamic code completion feature for the Java Editor that enables 

you to type a few characters and then display a list of possible classes, methods, 

variables, and so on that can be used to automatically complete the expression. 
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Figure 12.   NetBeans IDE 3.5 user interface running on Windows XP Platform 

 

 
Figure 13.   Code completion feature running in NetBeans IDE 3.5. This feature displays 

context-sensitive pop-up windows to facilitate code completion. 
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G. NPS ARIES AUTONOMOUS UNDERWATER VEHICLES (AUV) 

1. Introduction  
The Naval Postgraduate School Center for AUV Research has been building, 

operating, and researching autonomous underwater vehicles (AUVs) since 1987. Each 

new generation of vehicles have substantially increased operational capabilities and are 

much more robust and sophisticated in terms of hardware and computer software. These 

vehicles have also moved from operating in swimming pool environments to the open 

ocean [Oceans 2000].  The latest NPS vehicle is named Acoustic Radio Interactive 

Exploratory Server (ARIES). This vehicle is a student-research test bed for shallow-water 

minefield-mapping missions, operating in the literal ocean. Currently the vehicle operates 

regularly in Monterey Bay [Grunesien 2002]. 

 

2. Dimensions and Endurance  
The vehicle weighs 225 Kg and measures approximately 3 m long wide and 0.25 

m high. The hull is constructed of 6.35 mm thick type 6061 aluminum and forms the 

main pressure vessel that house all electronics, computers and batteries. A flooded 

fiberglass nose is used to house the external sensors, key-controlled power “on/off” 

switches and status indicators. ARIES is capable of a top speed of 3.5 knots and is 

powered by six 12-volt rechargeable lead-acid batteries. Vehicle endurance is 

approximately 4 hours at top speed, with 20 hours endurance under “hotel load” only. 

The ARIES is primarily designed for shallow-water operations and can operate safely 

down to depths of 30 meters [Oceans 2000].  

 

3. Propulsion and Motion Control Systems  

Main propulsion is achieved using twin ½ Hp electric drive thrusters located at 

the stern. During normal submerged flight, heading and depth are controlled using upper 

bow and stern rudders plus a set of bow planes and stern planes. Since the control fins are 

ineffective during slow (or zero) forward-speed maneuvers, vertical and lateral cross-

body thrusters are used to control surge, sway, heave, pitch and yaw motions 

[Oceans 2000]. 
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4. Navigation Sensors 
The sensor suite used for navigations includes a 1200 kHz Instruments (RDI) 

Navigator Doppler Velocimeter Log (DVL) that also contains a TCM2 magnetic 

compass. This instrument measures the vehicle ground speed, altitude, and magnetic 

heading. Angular rates and accelerations are measured using a Systron Donner 3-axis 

Motion pak IMU. While surfaced, Global Positioning System (GPS) inputs is provided 

by a carrierphase differential GPS (DGPS CP) system, available during surfaced 

operation to correct any navigational errors accumulated during the submerged phases of 

a mission [Oceans 2000]. 

 

5. Sonar and Video Sensors 
Tritech ST725 scanning sonar and an ST1000 profiling sonar is used for obstacle 

avoidance and target acquisition/reacquisition. The sonar heads can scan continuously 

through 360 degree of rotation or swept through a predefined angular sector. A fixed-

focus wide-angle video camera is located in the nose and is connected to a DVC recorder. 

The computer is interfaced to the recorder that controls on/off and start/stop record 

functions. While recording images, data for date, time, vehicle position, depth and 

altitude is superimposed on the video image [Oceans 2000]. 

 

6. Vehicle/Operator Communications 
Radio modems are used for high bandwidth command, control and system 

monitoring while the vehicle is deployed and surfaced. While submerged, an acoustic 

modem is used for low-bandwidth communications. In the laboratory environment, a 10 

Mbps thin-wire Ethernet connection is used for software development and mission data 

upload and download [Oceans 2000]. 

 

7. Computer Hardware Architecture 
The dual-computer system unit measures approximately 28 x 20 x 20 cm. It 

consists of two Ampro Little Board 166 MHz Pentium computers with 64 MB RAM, 

four serial ports, a network adapter and a 2.5 GB hard drive each. Two DC/DC voltage 
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converters for powering both computer systems and peripherals are integrated into the 

computer package. The entire computer system draws a nominal 48 Watts. Both systems 

use TCP/IP sockets over thinwire Ethernet for inter-processor communications as well as 

connections to an external LAN. The sensor data-collection computer is designated 

QNXT. The second is named QNXE and executes the various auto-pilots for servo-level 

control [Oceans 2000]. 

 

8. Computer Software Architecture 
The ARIES AUV uses a tri-level software architecture called the Rational 

Behavior Model (RBM).  RBM divides the responsibilities into areas of open-ended 

strategic planning, soft-real-time tactical analysis and hard-real-time execution-level 

control. The RBM architecture is modeled after a manned submarine operational 

structure.  The correspondence between the three levels and a submarine crew is shown 

in Figure 14 below.  

 
Figure 14.   Relational Behavior Model tri-level architecture hierarchy with level emphasis 

and submarine equivalent listed [Holden 1995].  

This figure represents the tri-level software hierarchy with level emphasis and 

submarine equivalent listed. The Execution Level assures the interface between hardware 

and software. Its tasks are to maintain the physical and operational stability of the 

vehicle, to control the individual devices and to provide data to the tactical level. These 

tasks are currently performed by on-board host QNXS computer. The Tactical Level 
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provides a software level that interfaces with both the Execution Level and the Strategic 

Level. Its chores are to give to the Strategic level indications of vehicle state, completed 

tasks and execution level commands. The Tactical level selects the tasks needed to reach 

the goal imposed by the Strategic level. It operates in terms of discrete events.  

The Strategic Level controls the completion of the mission goals. The mission 

specifications are inside this level. 

 

H. RELATED RESEARCH 

1. History and Contributors 
The AUV Workbench is the result of the combined efforts of several past and 

present NPS students and faculty.  Adrien Gruneisen and Yann Henriet [Grunesien 2002] 

developed the first version of the workbench based on the dissertation research of Don 

Brutzman [Brutzman 1994].  It executes AUV missions while providing the user with a 

“close-up” view of the vehicle so the vehicle dynamics can be observed.   

Doug Horner added support for a non-validating XML-based mission script, an 

obstacle avoidance algorithm, and support of mission planning using plain text format. 

The original vehicle execution was re-written using Java network communications.  Of 

note, the XML-based mission script format has been superseded by the Hawkins and Van 

Leuvan thesis effort in 2003 [Hawkins 2003] and the Ayala thesis on AUV Java 

execution using Distributed Interactive Simulation (DIS) supersedes the older vehicle 

execution [Ayala 2002].   The obstacle avoidance module does not compute the path 

dynamically. It generates a path based on a list of known obstacles and the preloaded 

AUV mission script.  The initial efforts were to implement a simple standalone 

application for pre-mission visualization and as a quick prototype for proof-of-concept. 

Therefore there was no network connectivity (e.g., through IEEE Distributed Interactive 

Simulation DIS protocol) and no collaboration tools were introduced. 
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I. SUMMARY 
The NPS AUV Workbench integrates years of research work by students and 

faculty.  To take the AUV Workbench to the next step, it is necessary to streamline these 

efforts and employ the best practices of software development.  It is through such an 

approach that important knowledge can be retained and continued research and 

development can be promoted.   
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III. AUV WORKBENCH 

A. INTRODUCTION 
The AUV Workbench is a common mission planning and analysis tool for AUVs.  

It supports physics-based AUV modeling and visualization of vehicle behavior and 

sensors in all mission phases: pre-mission, post-mission and ongoing mission 

visualization.  The AUV workbench consists of four main modules. These modules 

communicate with each other either directly or over the network for required interaction. 

The individual modules are responsible for four distinct functions: mission execution; 

virtual world dynamics modeling and feedback; mission planning and generation; and 

2D/3D mission visualization. This chapter provides details regarding the design and 

implementation of the modules developed under this thesis, namely mission planning, 

XML-based mission script and the general Workbench interface. The topics on mission 

execution and virtual world modeling and feedback are also explained.  Two supporting 

modules are included to facilitate information exchange among human operators as well 

as agents. 

 

B. DESIGN RATIONALE 

1. Graphical User Interface (GUI) 
The Workbench user interface is divided into four distinct sections.  Text or 

XML-based mission scripts are loaded as part of the Mission panel, in the upper left 

pane.  Clicking on List and Text tabbed pages toggle between the various modes of 

the mission script.  The Mission Planner and three-dimensional visualization displays 

provides the viewing panel on the upper right pane.  The modules, Execution and 

Dynamics, to model the robot and its virtual environment are found at the bottom of the 

Workbench window.  By default, the application toolbar is located on the right side.  It 

allows the addition of custom applications to be added and launched in a separate 

process.  Of note, the toolbar is both dock-able and float-able.  The user can choose to 

dock the toolbar on any side of the Workbench application, or keep it floating. 
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Figure 15.   AUV Workbench application user interface.  

 

 
Figure 16.   List of modules and libraries required to build the AUV Workbench application. 
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2. Project Structure 
The AUV Workbench is Java-based and was implemented using a componentized 

framework.  The project structure is shown in Figure 17.  At the top level, the core 

directories are /bin, /lib, /execution, /dynamics, /Models, /Scripts, /dataweb and /dataim.  

The Java packages and classes that make-up the Workbench are kept in /bin directory.  

The list of required libraries such Apache Xerces for XML parsing are stored in /lib.  The 

robot control and virtual environment modules are found in /execution and /dynamics 

respectively.  To facilitate the user to get started quickly, sample models and mission 

scripts are distributed in /Models and /Scripts directories.  /dataweb and /dataim store 

files that are used by the web server and Jabber instant messaging modules. 

 
Figure 17.   AUV Workbench project directory structure. 

 
 
3. Source Code and Runtime Package Structure 
The directories in Figure 18 illustrate the directory structure of the AUV 

Workbench Java source and runtime packages.   

 

 
Figure 18.   AUV Workbench application (AUVW) Java source and binary directory 

structure. 
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This setup provides ease of development and subsequent maintenance of the 

different modules.  /main contains the source code of the main user interface and the 3D 

visualization. It is responsible for the rendering of the entire user interface including the 

placements of the user interfaces for the various modules. The two-dimensional mission 

planner module is placed in /mission.  Jabber instant messaging and web server modules 

are placed in /im and /web respectively. Common utilities and procedures are kept in /util. 

 
S/N Name Description 

1. main Main user interface and 3D Visualization module. 

2. mission Two-dimensional mission planner module. 

3. im Jabber Instant Messaging and XTC Event Monitor modules. 

4. web Web server 

5. util Common utilities. 

Table 5. A summary of AUV Workbench packages. 

 

 
Figure 19.   Overview of AUV Workbench classes. 
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Figure 20.    “Main” module package. 

 
Figure 21.    “Util” module package. 

 

 
Figure 22.   “Web” module package. 

 
Figure 23.    “Im” module package. 
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Figure 24.   “Mission” module package. 

 
4. Configuration File 
Although the componentized framework works well for developers, day-to-day 

users of the Workbench require something simpler so that they can make changes to the 

system easily and move on to their actual work. Therefore an XML-based configuration 

file has been introduced.  This file is located in the same directory as the application 

executeable.  Adding a new tool is as simple as opening the configuration file, 

AUVWorkbenchConfiguration.xml, adding a new entry under the Application stanza 

section and re-starting the Workbench.  Details on adding new tools to the application 

toolbar will be discussed in a subsequent section. 

 
<?xml version="1.0" encoding="UTF-8"?> 
<!-- 
  <head> 
   <meta name="filename" content="AUVWorkbenchConfiguration.xml" /> 
   <meta name="authors"  content="Daryl Lee, Duane Davis, Don Brutzman, 
US Naval Postgraduate School, Monterey, CA" /> 
   <meta name="created"  content="15 February 2004" /> 
   <meta name="revised"  content="15 February 2004" /> 
   <meta name="description"   
         content="This file contains the AUV Workbench configuration/> 
   <meta name="url"      
content="C:/auv/Workbench/Scripts/AuvCommandLanguage.xslt" /> 
   <meta name="document summary" content="A valid document will have a 
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AUVWorkBench command root element. A AUVWorkBench element can contain 1 
General, 1 Execution, 1 Hydrodynamics 1 EventMonitor and 1 
PluginManager"/> 
</head> 
 --> 
<AUVWorkBench> 
   <General> 
       <Models>../Models/</Models> 
       <Scripts>../Scripts/</Scripts> 
       <Application name="Jabber" tooltip="Instant Messaging Client" 
image="image/jabber.gif" show="true"> 
          <Command>C:/Program Files/RhymBox/RhymBox.exe</Command> 
          <Command>D:/Program Files/RhymBox/RhymBox.exe</Command> 
          <Command>C:/Program Files/IM/RhymBox/RhymBox.exe</Command> 
       </Application> 
       <Application name="Browse" tooltip="Web Browser" 
image="image/browser.gif" show="true" content-type="text/html"> 
          <Command>C:/Program 
Files/mozilla.org/Mozilla/mozilla.exe</Command> 
          <Command>D:/Program 
Files/mozilla.org/Mozilla/mozilla.exe</Command> 
          <Command>C:/Program Files/Internet 
Explorer/IEXPLORE.EXE</Command> 
          <Command>D:/Program Files/Internet 
Explorer/IEXPLORE.EXE</Command> 
       </Application> 
       <Application name="X3D-Edit" tooltip="X3D Editor" 
image="image/x3d.gif" show="true" content-type="model/x3d"> 
          <Command>C:/www.web3d.org/TaskGroups/x3d/translation/X3D-
Edit.bat</Command> 
          <Command>D:/www.web3d.org/TaskGroups/x3d/translation/X3D-
Edit.bat</Command> 
          <Command>C:/www.web3d.org/TaskGroups/x3d/translation/X3D-
Edit-English.bat</Command> 
       </Application> 
       <Application name="JEdit" tooltip="JEdit" 
image="image/jedit.gif" show="true" content-type="text/x-java"> 
          <Command>C:/Program Files/jEdit 4.1/jedit.exe</Command> 
          <Command>D:/Program Files/jEdit 4.1/jedit.exe</Command> 
       </Application> 
       <Application name="ADS" tooltip="AUV Data Server" 
image="image/3cubes.gif" show="true"> 
          <Command>C:/auv/ADS/AuvDataServer.bat</Command> 
          <Command>D:/auv/ADS/AuvDataServer.bat</Command> 
       </Application> 
       <Application name="NotePad" tooltip="Windows Notepad" 
image="image/note.gif" show="false" content-type="text/plain, 
text/xml"> 
          <Command>C:/windows/NOTEPAD.EXE</Command> 
       </Application> 
       <Application name="Picture" tooltip="Windows Fax and Viewer" 
image="image/graphics.gif" show="false" content-type="image/bmp, 
image/gif"> 
          <Command>C:/windows/System32/mspaint.exe</Command> 
          <Command>D:/windows/System32/mspaint.exe</Command> 
       </Application> 
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       <Application name="SVGVRML" tooltip="Display VRML and SVG" 
image="image/SVG.gif" show="false" content-type="model/vrml, 
image/svg+xml"> 
          <Command>C:/Program Files/Internet 
Explorer/IEXPLORE.EXE</Command> 
          <Command>D:/Program Files/Internet 
Explorer/IEXPLORE.EXE</Command> 
       </Application> 
       <Webserver docroot="../dataweb/" port="80" autostart="false" 
upload="../dataweb/in/" /> 
       <Jabber dirIn="../dataim/in/" dirOut="../dataim/out/" 
domain="surfaris.cs.nps.navy.mil" port="5222" username="lee" 
nickname="WorkBenchDaryl" resource="Work" 
jid="savage@conference.xchat.movesinstitute.org"/> 
    </General> 
    <Execution> 
       <ExecutionJava>../Java 
execution/classes/Execution</ExecutionJava> 
       <ExecutionC>../execution/execution.exe</ExecutionC> 
    </Execution> 
    <Hydrodynamics> 
    <Dynamics>../dynamics/classes/dynamics</Dynamics> 
       <AUV number="1" multicastGroup="224.2.181.145" 
multicastPort="62040" ttl="15" applicationID="0" siteID="0" 
entityID="1" desc="AUV in Beach Tank 1" /> 
       <AUV number="2" multicastGroup="224.2.181.145" 
multicastPort="62040" ttl="15" applicationID="0" siteID="0" 
entityID="2" desc="AUV in Beach Tank 2" /> 
       <AUV number="3" multicastGroup="224.2.181.145" 
multicastPort="62040" ttl="15" applicationID="1" siteID="1" 
entityID="36" desc="AUV in Beach Tank 3" /> 
    </Hydrodynamics> 
    <EventMonitor> 
       <MonitorDefault keywordSubject="mine " keywordBody="nice, mine"> 
          <WatchEvent expr="^.*(?i)MINE[s|S]? .*[ (]{1,2}(\d*),[ 
]{0,2}(\d*),[ ]{0,2}(\d*)[ ).]?+"> 
             <Alert type="visual" src="image/mine.gif"/> 
             <Alert type="sound" src="sound/alert.wav"/> 
             <Alert type="url" src="C:/auv/Workbench/doc/index.htm"/> 
          </WatchEvent> 
          <WatchEvent expr="^.*(?i)SHIP[s|S]? .*[ (]{1,2}(\d*),[ 
]{0,2}(\d*),[ ]{0,2}(\d*)[ ).]?+"> 
             <Alert type="visual" src="image/ship.gif"/> 
          </WatchEvent> 
          <WatchEvent expr="^.*(?i)LOCATION[s|S]? .*[ (]{1,2}(\d*),[ 
]{0,2}(\d*),[ ]{0,2}(\d*)[ ).]?+" alert=""/> 
       </MonitorDefault> 
       <Monitor jid="savage@conference.xchat.movesinstitute.org" 
desc="" datetimeStart="" dateTimeEnd="" keywordSubject=" location"/> 
       <Monitor jid="auvrobot@surfaris.cs.nps.navy.mil" desc="" 
datetimeStart="" datetimeEnd=""/> 
    </EventMonitor> 
</AUVWorkBench> 

Figure 25.   Sample AUV Workbench configuration file. 
 



37 

S/N Name Type Description 

1. AUVWorkBench Element Root. 

2. General Element Application configurations. 

3. Models Element Directory location of 3D models. 

4. Scripts Element Directory location of mission scripts. 

5. Execution Element Not used. 

6. ExecutionJava Attribute Location of Java class for execution application. 

7. ExecutionC Attribute Location of C program for execution application. 

8. Hydrodynamics Element Not used. 

9. AUV Element Not used.  

10. multicastGroup Attribute Multicast address. Not used. 

11. multicastPort Attribute Multicast port no. Not used.  

12. ttl Attribute Multicast packet time-to-live. Not used. 

13. applicationID Attribute DIS packet application ID. Not used. 

14. siteID Attribute DIS packet site ID.  Not used. 

15. entityID Attribute DIS packet entity ID. Not used. 

16. desc Attribute Description. Not used. 
Table 6. XML tagset to define the AUV Workbench configuration.  
 
 
5. ANT – JAVA-based Build Tool 
Ant is a Java-based build tool.  In theory, it is kind of like Make, without Make's 

wrinkles and with the full portability of pure Java code.  According to Ant's original 

author, James Duncan Davidson, the name is an acronym for "Another Neat Tool".  Ant 

builds projects specified by an XML build file. The Build file defines Build targets and 

Build tasks.  For example, a build file might contain separate targets for building a 

project and generating Javadoc. The individual targets or the default target for the project 

can be executed using the Ant build file (http://ant.apache.org accessed January 2004).  

The build.xml for AUV Workbench is given in Figure 26. 

<?xml version="1.0" encoding="UTF-8" ?>  
 
<!-- ANT Build Script for the AUV Workbench Project --> 
<project name="AUVWorkbench" default="bin" basedir="."> 
 
  <!-- ############# Project Standard Properties ########### --> 
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  <property name="project.name"    value="AUVWorkbench" /> 
  <property name="project.version" value="0.1" /> 
 
  <!-- Java source and package directory --> 
  <property name="src.dir"         value="${basedir}/src" /> 
  <property name="src.main.dir"    value="${src.dir}/main" /> 
  <property name="src.mission.dir" value="${src.dir}/mission" /> 
  <property name="src.im.dir"      value="${src.dir}/im" /> 
  <property name="src.web.dir"     value="${src.dir}/web" /> 
  <property name="src.util.dir"    value="${src.dir}/util" /> 
 
  <!-- Library dependencies --> 
  <property name="lib.dir"         value="${basedir}/lib" /> 
 
  <!-- Java compiled and package directory --> 
  <property name="build.dir"         value="${basedir}/bin" /> 
  <property name="build.main.dir"    value="${build.dir}/main" /> 
  <property name="build.mission.dir" value="${build.dir}/mission" /> 
  <property name="build.im.dir"      value="${build.dir}/im" /> 
  <property name="build.web.dir"     value="${build.dir}/web" /> 
  <property name="build.util.dir"    value="${build.dir}/util" /> 
  <property name="build.image.dir"   value="${build.dir}/image" /> 
 
  <!-- distribution directory is the same as bin for the moment --> 
  <property name="dist.dir"           value="${basedir}/bin" /> 
  <property name="dist.jar.file"       
      value="${dist.dir}/${project.name}-${project.version}.jar" /> 
  <property name="manifest.file"  
            value="${build.dir}/META-INF/manifest.mf" /> 
 
  <!-- Java documentation directory --> 
  <property name="javadocs.dir"      value="${basedir}/javadocs" /> 
 
  <!-- Javadocs ZIP file --> 
  <property name="javadocs.file"       
   value="${dist.dir}/${project.name}-${project.version}-javadocs.zip" /> 
 
  <!-- include dependent libraries to classpath -->   
  <path id="build.classpath"> 
    <fileset dir="${lib.dir}"> 
      <include name="*.jar" /> 
      <include name="*.zip" /> 
    </fileset> 
  </path> 
  <!-- ################### Project Build ################### --> 
  <!-- ################## "clean" command ################## --> 
  <!-- Clean-up existing files and directories --> 
  <target name="clean"> 
    <!-- remove compiled packages -->  
    <delete dir="${build.main.dir}" /> 
    <delete dir="${build.mission.dir}" /> 
    <delete dir="${build.im.dir}" /> 
    <delete dir="${build.web.dir}" /> 
    <delete dir="${build.util.dir}" /> 
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    <!-- remove JAR file --> 
    <delete file="${dist.jar.file}" /> 
 
    <!-- remove JavaDocs --> 
    <delete dir="${javadocs.dir}" /> 
  </target> 
 
  <!-- ################# "prepare" command ################# --> 
  <!-- Create the destination directories --> 
  <target name="prepare" depends="clean"> 
    <!-- create packages directory -->  
    <mkdir dir="${build.main.dir}" /> 
    <mkdir dir="${build.mission.dir}" /> 
    <mkdir dir="${build.im.dir}" /> 
    <mkdir dir="${build.web.dir}" /> 
    <mkdir dir="${build.util.dir}" /> 
    <mkdir  dir="${javadocs.dir}" /> 
  </target> 
 
  <!-- ################# "command" command ################# --> 
  <target name="compile" depends="prepare" 
          description="compile all the source codes"> 
    <javac srcdir="${basedir}/src"  
           destdir="${build.dir}" deprecation="true"> 
      <classpath refid="build.classpath" /> 
    </javac> 
  </target> 
 
  <!-- ########### "dist" command to generate JAR ########## --> 
  <target name="dist" depends="compile"> 
    <jar jarfile="${dist.jar.file}" 
         basedir="${build.dir}" manifest="${manifest.file}"> 
    </jar> 

               </target> 
 
  <!-- ################# "javadoc" command ################# --> 
  <target name="javadoc" depends="compile"> 
    <javadoc destdir="${javadocs.dir}"  
             windowtitle="${project.name}  
                          Class Library (version ${project.version})" 
             overview="${basedir}/src/overview.htm"> 
      <classpath refid="build.classpath" /> 
      <packageset dir="${src.dir}" defaultexcludes="yes"> 
      </packageset> 
    </javadoc> 
 
    <!-- create a zip file for the javadocs in  
         distribution directory --> 
    <zip zipfile="${javadocs.file}"> 
      <zipfileset dir="${javadocs.dir}" 
                  prefix="${project.name}-${project.version}-javadocs" /> 
    </zip> 
  </target> 
 
  <!-- ################### "all" command ################### --> 
  <target name="all"  
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          depends="dist,javadoc" 
          description="Compiles the source, builds the jar files,  
                       generates the Javadoc HTML pages and creates  
                       distribution files (.zip)."> 
  </target> 
</project> 

Figure 26.   AUV Workbench ANT build.xml used to compile and build the application.  
 

Here is a detailed examination of the build.xml file to explain what it does:  

• project: includes a project name, the default target to run if none of the 

other individual targets are run, and the location of the base directory 

(/bin). 

• properties: Ant targets and tasks are typically “property-aware”. 

Properties are also used to pass parameters to tasks without overriding the 

existing properties in the build file.  To get the value of a property, use 

“${<property name>}” syntax. 

• clean target: deletes existing compiled packages’ directories and the 

project JAR file. 

• prepare target: creates the package directories for the compiled classes. 

• compile target: initiates the clean target  first (using the depends keyword), 

which in turn initiates clean target, then compiles the Java source files and 

puts the generated .class files in the build directory. 

• dist target: initiates the compile target first and creates a JAR file in that 

directory.  

• javadoc target: creates the JavaDoc for the project and also generate a 

compressed copy of the Java documentations. 

• zip target: Compress all the project dependencies into a single ZIP file. 

• all target: initiates dist, javadoc and zip targets. 

• To activate the individual targets, use “ant <target name>”; e.g., “ant 

compile”.  By default, Ant looks for “build.xml”.  To specify a different 

Build file name, use “ant –buildfile <Build filename> <target name>” 
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JAVA_HOME=C:\Application\ j2sdk1.4.2 
ANT_HOME=C:\apache-ant-1.6.0 
Buildfile: build.xml 
 
clean: 
   [delete] Deleting directory C:\Project\darUUV-ant\bin\main 
   [delete] Deleting directory C:\Project\darUUV-ant\bin\mission 
   [delete] Deleting directory C:\Project\darUUV-ant\bin\im 
   [delete] Deleting directory C:\Project\darUUV-ant\bin\web 
   [delete] Deleting directory C:\Project\darUUV-ant\bin\util 
   [delete] Deleting: C:\Project\darUUV-ant\bin\AUVWorkbench-0.1.jar 
   [delete] Deleting directory C:\Project\darUUV-ant\javadocs 
 
prepare: 
    [mkdir] Created dir: C:\Project\darUUV-ant\bin\main 
    [mkdir] Created dir: C:\Project\darUUV-ant\bin\mission 
    [mkdir] Created dir: C:\Project\darUUV-ant\bin\im 
    [mkdir] Created dir: C:\Project\darUUV-ant\bin\web 
    [mkdir] Created dir: C:\Project\darUUV-ant\bin\util 
    [mkdir] Created dir: C:\Project\darUUV-ant\javadocs 
 
compile: 
    [javac] Compiling 44 source files to C:\Project\darUUV-ant\bin 
 
dist: 

      [jar] Building jar: C:\Project\darUUV-ant\bin\AUVWorkbench-
0.1.jar 
 
BUILD SUCCESSFUL 
Total time: 12 seconds 

Figure 27.   Output from “ant dist” command running the AUV Workbench “build.xml” file. 
 
 

C. MISSION PLANNING 

1. Overview 

The AUV Workbench supports both a simple, text-based mission script as well as 

the use of XML-based mission scripts.  This section presents the details of the XML-

based mission script and the tools to author them. 

 

2. AUV XML-based Mission Control Script 
The XML AUV command language is defined using XML schema 

[Hawkins 2003].  In general the command language enables the explicit declaration of an 

entire mission using execution-level commands, the ad-hoc definition of a mission by 

providing individual commands asynchronously  (in the form of individual single 

command element documents), mission data archiving (telemetry, control orders, sonar 
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data, derived sensor-based data, etc.), and communication between various levels of the 

control architecture (execution, tactical, strategic levels) or between multiple autonomous 

vehicles, software agents, or human controllers.  This mission control language is a 

subject of ongoing research and is likely to change significantly in the next version. 

A valid document will have a missiondata, mission, report or individual 

command root element.  A missiondata element can contain up to one mission element 

and an arbitrary sequence of individual command, report, telemetry, control order and 

sonar data elements.  A mission element will contain one or more command elements in 

any order. 

 
a. “MissionData” Element 
Autonomous vehicle relevant info: mission commands, control orders, 

telemetry, sonar results, and/or reports to and from internal or external entities (other 

vehicles, agents, or human controllers). 

 
S/N Name Description Format Default Required 

1. UnitsOfMeasure Units of measure 
selections for 
application scaling as 
required. 

XML element. -  

2. vehicleName Name of vehicle.  VehicleTypes = {“aries”, 
“remus”, “phoenix”, “Los 
Angeles SSN”, “SDV-9”} 
Enumerated list of 
potential vehicle types for 
use with this schema. 

aries N 

3. date Date and time of 
mission.  

“dd MMM yyyy hh:mm:ss” 
format; e.g., “15 January 
2004 12:59:59” 

- N 

Table 7. XML Elements and attributes of MissionData element. 

 

b. "UnitsOfMeasure”Element 

S/N Name Description Type Default Required 

1. distance Units of measurement 
for distance. 

DistanceMeasures = 
{“feet”, “meters”, 
“kilometers”, “miles”} 
Enumerated list of possible 
distance measurement 
units.  

meters N 
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2. angle Units of measurement 
for angle. 

AngleMeasures = 
{“radians”, “degrees”, 
“rads”} 
 
Enumerated list of possible 
angular measurement 
units. 

degrees N 

Table 8. XML Elements and attributes of UnitsOfMeasure element. 

 

c. “Mission” Element 
Mission is an ordered set of command elements comprising a vehicle 

mission. The list of ARIES AUV-specific Execution-level command elements are given 

in Appendix B. 

<?xml version="1.0" encoding="utf-8"?> 
<MissionData vehicleName="aries" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" 
xsi:noNamespaceSchemaLocation="C:\auv\Workbench\Scripts\auvCommandLanguage-
xfsp.xsd"> 
 <Mission> 
  <Position x="12" y="55" depth="5"/> 
  <Standoff range="3.0"/> 
  <Thrusters on="false"/> 
  <Waypoint x="120" y="55" z="15"/> 
  <Waypoint x="120" y="65" z="15"/> 
  <Hover x="12" y="65" heading="270"/> 
  <Thrusters on="false"/> 
  <Waypoint x="12" y="55" z="5"/> 
  <Waypoint x="120" y="55" z="15"/> 
  <Waypoint x="12" y="55" z="5"/> 
  <Hover/> 
  <Wait time="10"/> 
  <Depth value="0"/> 
  <Wait time="50"/> 
  <Thrusters on="false"/> 
  <Quit/> 
 </Mission> 
</MissionData> 

Figure 28.   A sample XML-based mission script [after Hawkins 2002]. 
 
3. Mission Script Authoring Tools 
The two-dimensional Mission Planner module provides the means to graphically 

and intuitively display and author the XML-based AUV mission scripts.  The user is 

presented with a two-dimensional planar view of the mission.  This module has a mission 

canvas whereby a user can easily manipulate positional information pertaining to the 

script.  Extra effort was made to ensure that it is context-sensitive and is at the same time 
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as intuitive as possible.  For example, adding or deleting a waypoint is a simple right 

mouse click, double clicking on a point displays the attributes associated to it.  Each 

mission command has its own set of attributes and its respective user interfaces to 

manipulate them. 

Additionally, mission points can be edited manually or adjusted by using the drag 

feature.  Minor, but useful features such as snapping to the grid display were added too. 

 

 
Figure 29.   XML-based mission script display and 2D Mission Planner. The mission 

commands are displayed as a list on the left and the positional data are displayed 
graphically on the right. 
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Figure 30.   Right-click popup menu for the 2D Mission Planner. The popup menu provides 

the user with additional functionalities (e.g., add a “Waypoint”). 
 
 

S/N Name Description 

1. Add Waypoint Add a new waypoint. 

2. Add Insertion Point Add or update start or insertion point. 

3. Bounding Box Defines a rectangular area of interest 

4. Clear Clear the mission script. 

5. Show Grid Lines Display grid lines (25 pixels apart). 

6. Show Text Labels Display the text labels associated to each point. 

7. Show Watch Radius Display the watch area circle around each point. 

8. Snap to Grid Position or align to the grid lines. 

9. Background Color Set the background color. 
Table 9. Details of mouse right-click popup menu items. 
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Figure 31.   Select a point and right-click to either “Edit” or “Delete” a waypoint. 

 

 
Figure 32.   Mission Command Editor showing the Waypoint information. 

 

 
Figure 33.   Mission Command Editor showing the Thruster information. 

 

A two-dimensional viewer was developed to facilitate mission generation since it 

is easier for a user to manipulate in 2D space than 3D space.  Depth information can be 

displayed alongside each 2D point or through the use of color coding.  While the AUV 

mission script has a rich set of commands including non-positional ones, only mission 

commands that contain positional information are graphically displayed since they 

contain x-y coordinates.  To address this deficiency, an XML-based Mission List module 

was developed to run alongside the 2D Mission Planner.  The Mission List module is 
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essentially a list of all mission commands in the current script.  The two graphical views 

are currently linked dynamically with changes made on either side automatically 

reflected on the other. 

 

 
Figure 34.   Right-click popup menu on the Mission List display. 

 

D. EXECUTION AND DYNAMICS PROCESSES 

1. Execution 
The mission execution module uses the same software that is on board the actual 

AUV.  Utilization of the actual AUV software facilitates the development of control 

equations and algorithms, and enables the realistic rehearsal and fine-tuning of missions 

in a benign lab environment prior to attempting their execution in open water.  By 

querying the mathematical model of the virtual world for telemetry data rather than 

onboard sensors, the AUV software can create for itself the illusion that it is operating in 

the water and the software will behave accordingly.  

The AUV Workbench currently has two versions of the AUV execution software.  

The primary differences are the implementation programming language (compiled C 

code and Java) and useable command language options.  The Java version supports both 

simple textual and XML-based mission scripts [Ayala 2002], whereas the compiled C 

version only supports text-based scripts.  The former is preferred due to its support for 

XML-based mission scripts.  XML helps to remove any ambiguity in the names of the 

commands and provides error-checking through validation.   
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The vehicle behavior can be adapted to other vehicles by adjusting the control 

constants and by adding, deleting or changing control equations. The control algorithms 

can be tested and visualized with various mission scripts, against known hydrodynamics 

models. Any effort to provide precision control for an AUV requires an accurate 

estimation of both the vehicle’s physical and hydrodynamic parameters. Here a vehicle 

model for controlled steering behaviors was developed and the hydrodynamic parameters 

were calculated from actual data obtained from operations. [Johnson 2001] 

 

2. Dynamics 
The virtual world dynamics thread implements the AUV hydrodynamics 

mathematical model. When passed a telemetry string from the AUV execution thread, the 

model is applied, and then a follow-on telemetry string is generated to pass back to the 

AUV. Additionally, a Distributed Interactive Simulation (DIS) packet is broadcast over 

the network to drive the visualization thread of the workbench (as well as any other DIS-

enabled visualization application that may be on the network). In addition to 

hydrodynamics modeling, the dynamics thread contains classes that are utilized to model 

the vehicle’s onboard sensors. Sonar data (or that from any other onboard sensor) can 

therefore be derived and encapsulated within the telemetry string and DIS packets to 

allow for realistic feedback to the AUV execution software, and accurate mission 

visualization by the human operator. As with the execution software, the hydrodynamics 

mathematical model and sensor models currently in use were developed to model the 

vehicles operated by NPS, but can be arbitrarily adapted to other vehicles simply by 

modifying the control constants. 

The effects of the surrounding environment on a robot vehicle are unique to 

underwater domain. Understanding these forces is a key requirement in the development 

and control of the vehicle behavior. The dynamics program Java source code is designed 

to substitute for the natural environment effects on the AUV. It also provides an estimate 

of the AUV behavior in the water by performing a series of calculations using physical 

laws. By communicating with the execution code via a network socket, the telemetry data 

or state variables of the vehicle are collected. Dynamics apply several equations of 

motions, forces, and accelerations to the hydrodynamics model and the data received 
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from the execution code. The data produced by dynamics is then sent back to execution, 

where it is analyzed and appropriate action commands are then given to the respective 

actuators based on that data. This is a important and difficult part in the real-time 

simulation in a virtual world [Ayala 2002]. 

The 3D visualization algorithms in the dynamics code allow the update of 3D 

scenes developed using X3D-Edit. These scenes are viewed through an Internet browser 

using a plug-in VRML viewer.  

 

E. 3D VISUALIZATION 

1. Design and Implementation  
The visualization portion of the workbench contains a 3D viewer that utilized 

X3D or VRML models of the AUV and its virtual environment. The 3D viewer is 

developed using an open-source 3D library, Xj3D.  By reading and interpreting the 

incoming DIS packets from network, the viewer automatically animates the vehicle.  

Through the 3D display, the user is provided with visual feedback on control settings, 

sensor effectiveness and utilization. 

 

2. User Interface 
The 3D display module is located in the upper right pane of the application 

window.  It is on the tabbed page component alongside the 2D mission viewer module. 
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Figure 35.   3D Visualization Display displaying AUVInBeachTank scene. 

 

F. WEB SERVER 

1. Design and Implementation 
In a collaborative environment, there is always a need to share information.  For 

example, data such as current position and list of obstacles encountered can be published 

and easily accessible to both human operators and other planners who may or may not be 

using the Workbench.  Dissemination of information via web server is well tested and has 

proven to be a stable and efficient solution.  One possible way to web-enable the 

Workbench is to deploy a full-fledged open-source web server such as Apache Tomcat, 

but this approach introduces additional deployment, administrative and maintenance 

issues.  Therefore a scaled down but fully functional multi-threaded web server has been 

incorporated as a module in the AUV Workbench.  This allows publishing of information 

directly from the Workbench.  At the same time, the web server is able to process 

uploaded files via HTTP POST.  Through the use of HTTP GET and HTTP POST, it is 

possible to incorporate message and file sharing capability via HTTP into the 

Workbench.  It has been proposed that the HTTP file transfer mechanism be used for 

“mirroring” of mission data between individual Workbench applications and a central 

archival server. 
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S/N Directory name Description 

1. dataweb Default location. 

2. dataweb/in Location to store incoming data via HTTP POST. 

3. dataweb/results Location to store XSBC generated AUV mission 
telemetry data. 

Table 10. Sample web server directory structure. 

 

The web server settings are stored in the XML-based configuration: 

<Webserver docroot="../defaultroot/" port="80"  
     autostart="true" upload="../defaultroot/data/"/> 

Figure 36.   Web server settings in XML configuration file. 

 

S/N Name Type Description 

1. Webserver Element Web server parameters. 

2. docroot Attribute Web server default directory. 

3. Port Attribute Web server port no. 

4. autostart Attribute Auto-start web server upon application startup? 

5. Upload Attribute Location to store uploaded files. 

Table 11. XML tagset defining the web server configuration. 

 

2. User Interface 
The web server module is located on the lower pane of the Workbench 

application, on the Web Server tabbed page.  A set of default values, such as document 

default directory and port number, are given. Simply clicking on the Start button invokes 

the web server.  To test whether the web server is working, open a hyperlink to the host 

or machine that the AUV Workbench application is running on, using an Internet 

browser; e.g., http://localhost:80/index.htm. 

 



52 

 
Figure 37.   Web server module user interface. 

 
S/N Component Description 

1. Document Root Web server default directory. 

2. Port No. Web server port number; e.g., 8080 

3. Upload directory Location to store uploaded files. 

4. “Auto-start” checkbox Automatically start the web server upon application start-up? 

5. “Start” button Start or stop the web server 

Table 12. Details of web server user interface. 

 

G. JABBER INSTANT MESSAGING 

1. Design and Implementation 
To facilitate near-realtime communications, a customized Java-based Jabber 

client is incorporated into the Workbench.  The customized client is able to handle simple 

plain-text messages and binary file data (e.g., images and XML-based mission script).  

The XTC Monitor module is built on top of the customized Jabber client.  An open-source 

Jabber library, JiveSoftware Smack library is used [JiveSoftware 2003]. Section H covers 

the XTC Monitor in a greater depth.  Worth noting is that the customized Jabber module 

is introduced for XTC Event Monitoring and packaging of a binary file.  It is not to 

replicate the simple human-to-human text messaging capability found in standard Jabber 

clients. 

S/N Directory name Description 

1. dataim/in Directory location to store incoming decoded XHTML binary data. 

2. dataim/out Directory location to store outgoing binary file data. 

Table 13. Workbench instant messaging directory structure. 

The Jabber settings are stored in the XML-based configuration: 

<Jabber dirIn="../dataim/" domain="surfaris.cs.nps.navy.mil"  
  port="5222" username="lee" nickname="XJava" resource="Work"  
  jid="savage@conference.xchat.movesinstitute.org"/> 

Figure 38.   Jabber settings defined in the AUV Workbench configuration file 
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S/N Name Type Description 

1. Jabber Element Web server parameters. 

2. 
dirIn Attribute Directory location to store incoming decoded XHTML 

binary data. 

3. dirOut Attribute Directory location to store outgoing binary file data. 

3. domain Attribute Jabber host. 

4. port Attribute Jabber port number. 

5. username Attribute Login user name 

6. nickname Attribute Nickname. 

7. resource Attribute Resource. 

8. jid Attribute JID or chat-room to listen to upon login. 
Table 14. XML tagset specifying the Jabber configurations. 

 

2. User Interface 
This module is located on the lower pane of the Workbench application, on the 

XTC Monitor tabbed page.  The application reads in the Jabber settings under the Jabber 

stanza of the configuration file (Figure 25).  This set of values is populated in the edit-

boxes within the Settings tabbed page (Figure 39).  Once the password is set, clicking on 

Connect button establishes a session with the Jabber server specified in the domain edit-

box.  At the same time, the client will start to listen for messages in the chat room 

(specified in Chatroom edit-box). 
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Figure 39.   User interface to configure instant messaging (IM) settings. 

 

S/N Component Description 

1. Name User log on name 

2. Domain Hostname of Jabber server. 

3. Resource User profile. 

4. Port no. Port number to be used. 

5. Password User log on password. 

6. Chat room Chat room to listen to upon log on. 

7. Skip first N messages Upon establishing a session, the Jabber server echos the 
entire list of messages in that chat room.  This setting allows 
the customized client to skip some of the old messages. 

8. Incoming data directory Location to store decoded binary data. 

9. Outgoing data directory Location to store binary data to be packaged and sent out. 

Table 15. Details of customized Jabber user interface. 

 

H. XTC EVENT MONITOR 

1. Design and Implementation 
The XTC Event Monitor module is comprised of three sub-modules. IMSend and 

IMReceive are the two basic ones used for instant messaging.  IMSend is responsible for 
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the packaging of binary data and sending it out.  It is able to handle single or multiple file 

attachments. The outgoing message may be addressed to a specific Jabber user (i.e., peer-

to-peer) or a chat-room.  IMReceive listens for posted messages.  Again, it is listening to 

either a particular Jabber user or a chat-room.   When there is an incoming message, it 

parses it and using event monitor criteria defined in the IMCriteria sub-module, it 

generates the appropriate response or alert.  IMReceive is able to re-generate packaged 

binary files within a Jabber message (i.e., sent by IMSend or similar programs).  A 

sample XHTML message with encoded binary file data is shown in Figure 40.  See 

Chapter IV for details on the design and implementation of the message package module.  

Next, this section discusses how the incoming events are processed, how alerts are raised 

and ways messages can be sent. 

 
Figure 40.   Sample XHTML message with encoded binary file in CDATA section. 

The third sub-module, IMCriteria is for the definition of event monitoring 

criteria.  For this thesis, regular expressions are used to define the watch events.  Watch 

Event determines whether an incoming message matches the regular expression patterns.   

If a match is found, respective alerts are raised. 
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2. User Interface 
As part of the customized Jabber client, XTC Monitor functionalities are found on 

the same XTC Monitor tabbed pages. 

 
Figure 41.   Instant Messaging user interface to package and send text and files. 
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Figure 42.   Instant Messaging user interface to display list of incoming messages. 

 
 

 
Figure 43.   Instant Messaging user interface to define the criteria to alert the user. 

 



58 

3. XTC Event Monitoring Configuration 
The settings for the event monitor module are XML-based and included under the 

XTCMonitor stanza of the AUVWorkbench configuration file.  There are two types of 

event monitors: There is one instance of default event monitor (MonitorDefault) and 

multiple instances of Jabber user-specific event monitors (Monitor).  There can be one or 

more Alert elements associated to a WatchEvent element. These alerts, if enabled (i.e., 

enabled attribute set to true), will be raised in a consecutive order. 

<XTCMonitor> 
   <MonitorDefault keywordSubject="mine, bomb, torpedo" 
keywordBody="nice, mine, bomb, torpedo, location, CVN62, SNN12, DDG51"> 
      <WatchEvent name="Mine" desc="Look out for Mines" 
expr="^.*(?i)MINE[s|S]? .*[ (]{1,2}(\d*),[ ]{0,2}(\d*),[ ]{0,2}(\d*)[ 
).]?+"> 
          <Alert type="visual" src="image/mine.gif" enabled="true"/> 
          <Alert type="sound" src="sound/alert.wav" enabled="true"/> 
          <Alert type="url" src="C:/auv/Workbench/doc/index.htm" 
enabled="false"/> 
      </WatchEvent> 
      <WatchEvent name="Ship" desc="Look out for Ships" 
expr="^.*(?i)SHIP[s|S]? .*[ (]{1,2}(\d*),[ ]{0,2}(\d*),[ ]{0,2}(\d*)[ 
).]?+"> 
          <Alert type="visual" src="image/ship.gif" enabled="true"/> 
      </WatchEvent> 
      <WatchEvent name="Location" desc="Look out for Locations" 
expr="^.*(?i)LOCATION[s|S]? .*[ (]{1,2}(\d*),[ ]{0,2}(\d*),[ 
]{0,2}(\d*)[ ).]?+" alert=""/> 
   </MonitorDefault> 
   <Monitor jid="savage@conference.xchat.movesinstitute.org" desc="" 
datetimeStart="" dateTimeEnd="" keywordSubject="mineX, bomb, torpedo" 
keywordBody="mineX, bomb, torpedo, location"/> 
   <Monitor jid="auvrobot@surfaris.cs.nps.navy.mil" desc="" 
datetimeStart="" datetimeEnd="" keywordSubject="urgent, problem" 
keywordBody="damage, sinking, surface"/> 
</XTCMonitor> 

Figure 44.   Sample EventMonitor stanza specifying the type of Watch Events and their 
corresponding Alerts. 

 

 

 

 

 

 



59 

S/N Name Type Description 

1. EventMonitor Element Root element for Event Monitoring stanza. 

2. MonitorDefault Element Default event monitor.   

3. WatchEvent 
Attribute Watch event to look for. There can be multiple 

<WatchEvent> under <MonitorDefault> or <Monitor> 
elements. 

4. name Attribute Name of watch event. 

5. desc Attribute Description of watch event. 

6. expr Attribute Regular expression to be match against. 

7. Alert 
Element Alert to invoke upon a successful match. There can be 

multiple <Alert> within a <WatchEvent>. 

8. type Attribute Type of alert. An enumeration of “visual”, “sound” and “url”. 

9. src 
Attribute Source of the alert; e.g., image/mine.gif.  This will 

determine how the alert rendered; e.g. if it is a visual one, it 
is plotted. 

10. Monitor Element Event monitor associated to a particular Jabber user ID. 

11. jid Attribute Jabber user ID. 

12. desc Attribute Description. 

13. datetimeStart Attribute When to start this event monitor. 

14. datetimeEnd Attribute When to stop this event monitor. 
Table 16. XML tagset to configure XTC event monitoring. 

 

4. How Incoming Events are Handled 
Upon application startup, the list of default and user-specific event monitors are 

loaded.  For each of the monitors, there can be one or multiple watch events (in 

WatchEvent tag).  The check to determine whether a watch event is matched against an 

incoming event is via the regular expression defined within the expr attribute.  Once 

there is a match, the list of available alerts under the WatchEvent element is raised.  

There are three types of alerts: “visual”, “sound” and “url”.  The alert type is depicted 

under the type attribute of the Alert element.  In addition, the src attribute defines the 

source location of the alert; e.g., image or sound path.   
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<WatchEvent expr="^.*(?i)MINE[s|S]? .*[ (]{1,2}(\d*),[ ]{0,2}(\d*),[ 
]{0,2}(\d*)[ ).]?+"> 
    <Alert type="visual" src="image/mine.gif"/> 
    <Alert type="sound" src="sound/event.wav "/> 
</WatchEvent> 

Figure 45.   WatchEvent quatrain. 
 

For this thesis, the following alert mechanisms are implemented: 

a. Visual Alert 
The 2D Mission Planner module handles this alert.  A new target object is 

added to the list of targets, maintained by the module.  Next the target is plotted on the 

2D display using the image specified in the src attribute. 

<Alert type="visual" src="image/mine.gif"/> 

Figure 46.   A sample alert of type “visual”. 

 

b. Sound Alert 
This alert is handled within the Event Monitoring module. If the source 

path of the alert exists, a sound is played back. 

<Alert type="sound" src="sound/alert.wav"/> 

Figure 47.   A sample alert of type “sound”. 

 

c. URL or Hyperlink Alert 
The Event Monitoring module opens an application to display the 

hyperlink or file specified in the src attribute.  The application is chosen based on the 

content type of the hyperlink (e.g., .htm) or file (e.g., .bmp or .txt).  For example with the 

following alert (Figure 48), it is of type “url” and the source file 

(“C:/auv/Workbench/doc/index.htm”) is of “text/html” content type (determined from the 

file extension).  Based on the “text/html” content type, the module then looks for the 

associated application to render it. 

<Alert type="url" src="C:/auv/Workbench/doc/index.htm"/> 

Figure 48.   A sample alert of type “url”. 

The list of available applications is defined in the AUV Workbench 

configuration file under the Application stanzas.  A sample of the Application stanza is 

given in Figure 49.  
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<Application name="Browse" tooltip="Web Browser"  
     image="image/browser.gif" show="true"  
     content-type="text/html"> 
   <Command>C:/Program Files/mozilla.org/Mozilla/mozilla.exe</Command> 
   <Command>C:/Program Files/Internet Explorer/IEXPLORE.EXE</Command> 
</ Application > 
 
<Application name="NotePad" tooltip="Windows Notepad"  
     image="image/note.gif" show="false"  
     content-type="text/plain"> 
   <Command>C:/windows/NOTEPAD.EXE</Command> 
</Application> 
 
<Application name="Picture" tooltip="Windows Fax and Viewer" 
     image="image/graphics.gif" show="false"  
     content-type="image/bmp, image/gif"> 
   <Command>C:/windows/System32/mspaint.exe</Command> 
</Application> 

Figure 49.   A sample list of applications defined in Application stanzas that can be invoked. 

 

An overview of the process of event monitoring of instant messages and the triggering of 

alerts is given in Figure 50. 

 
Figure 50.   Instant messaging event monitoring and alert mechanism process via         

standard Jabber client. 
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5. How Events/Messages are Generated 

a. Free-form Text Using Standard Jabber Clients 
Using a standard Jabber client such as Rhymbox, a human operator keys 

in the message “A mine is found at position (100, 100, 5)” and sends it.  With free-form 

text, the receiving party (i.e., XTC Monitor) needs to extract the necessary pieces of 

information from the chatter.  For this thesis, a simple sentence parsing module using 

Java's Regular Expression Parser was implemented.  A more precise and robust 

extraction module that utilizes Natural Language Processing can be developed in the 

future.  This technique is error-prone especially when the operator is under stress.  This in 

turn leads to additional verification at the software end to ensure that it is tolerable to 

minor errors such as missing spaces, characters or misplaced characters. 

 

b. Structured Text  
Message generation using a structured format is a preferred approach.  The 

user is presented with a form (HTML or Java Swing application).  This approach 

removes the need for a sentence parser and error checking, thus reducing message 

processing time.  Data from structured text comes formatted and possibly validated at the 

server or client end.  The receiving party only needs to extract the necessary portions of 

data based on a predefined schema.  There are various ways that structured text can be 

captured: 

• Capturing the data in the correct format manually by human 

operators.  This is a tedious and error-prine process. 

• Use of a customized client application to allow capture and 

validation of inputs from the operators. 

• Use of a web page to allow the operators to key-in the required 

information.  This method is preferred, as it only requires that there 

is access to a web browser and the web page since this will work as 

long as the human operator has access to the web page.  This 

removes the need to deploy customized applications. 
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Figure 51.   An event monitoring HTML form to capture target type and location information. 

Advantage of using Instant Messaging protocol is that it allows both 

human operators and agents to interact in the same environment.  Agent-specific data is 

stored in the XHTML sections of the message.  These are not visible on normal Jabber 

clients, but are caught by agents that are listening for them and processed accordingly.  

 

I. APPLICATION TOOLBAR 
The application toolbar is highly configurable to allow users and developers alike 

to add new applications to the AUV Workbench.  The toolbar is both floatable (Figure 

52) to increase display real estate on the Workbench as well as dock-able to any side of 

the Workbench application. This provides a convenient way for users or developers to 

bundle frequently used applications.  The capability is achieved through the use of an 

XML-based configuration file.  The current version of the Workbench has two built-in 

features: the “About” dialog and the “Screen Capture” capability (i.e., the first two 

toolbar buttons).  A sample application toolbar is seen below: 

 
Figure 52.   A floating application toolbar. 
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Figure 53.   A docked application toolbar on the left. 

 
S/N Item Type Description 

1. About Built-in “About” dialog. 

2. Screen-shot Built-in Perform a screen capture. 

3. Jabber External  Standard Jabber client. 

4. Browse External  Internet browser. 

5. X3D-Edit External X3D Graphics Editor. 

6. jEdit External Open-source Java Editor. 

7. ADS External AUV Data Server. 

Table 17. Details of Toolbar Buttons. 
 

The XML-based configuration file is human-readable and nicely partitioned to 

allow the user to add or remove applications easily.  The procedures to add a new 

application are given below: 

• Locate and open the configuration file; e.g., AUVWorkbenchConfig.xml. 

• Go to the section where the Application tags are defined. 

• Make a copy of an existing Application set. 
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• Make the necessary changes to the attributes; e.g., name is the name that 

appears in the toolbar button, tooltip is the hint and image defines the 

location of the toolbar button image. 

• Add the file types that this application can handle under content-type 

attribute.  Set show attribute to “true” to display in toolbar. 

• The param attribute defines the parameter to be passed into the application 

upon its startup; e.g., a hyperlink to be a web-page for a Internet browser 

application. 

• Next add Command elements.  These define the actual locations of the 

application.  Upon clicking on the particular toolbar button, the AUV 

Workbench tries to look for the application from the possible list of 

Command tags provided.  Once found, the application is invoked. 

<Application name="Browse" tooltip="Web Browser" 
image="image/browser.gif" show="true" content-type="text/html" 
param="intranet.nps.navy.mil"> 
   <Command>C:/Program Files/mozilla.org/Mozilla/mozilla.exe</Command> 
   <Command>C:/Program Files/Internet Explorer/IEXPLORE.EXE</Command> 
</Application> 

Figure 54.   A sample toolbar application defined in the Application stanza. 

 

S/N Name Type Description 

1. Application Element Application to be invoked from toolbar. 

2. name Attribute Name of application. 

3. tooltip Attribute Button tooltip on toolbar. 

4. 
show Attribute Boolean value (true or false). To display in the toolbar or 

not? 

5. 
content-type Attribute File types that this application can handle.  Delimited by 

commas; e.g., image/bmp, image/gif 

6. 
param Attribute Parameter to be passed into application upon 

invocation; e.g., a hyperlink to a web-page. 

7. Image Attribute Location of image icon on toolbar. 

8. 
Command Element Command to invoke the application.  There can be 

multiple <Command> associated to an application. 
Table 18. XML tagset for configuring the toolbar module. 
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J. STORAGE, NETWORKING AND COMPRESSION 

1. Naming Convention 
Code conventions are important to programmers since 80% of the lifetime cost of 

a piece of software goes to maintenance. Software is hardly maintained for its whole life 

by the original author. Code conventions improve the readability of the software, 

allowing engineers to understand new code more quickly and thoroughly.  

S/N File Type Suffix 

1. Java Source Code .java 

2. Java Bytecode .class 

3. VRML .vrml 

4. X3D .x3d 

Table 19. File types and their suffixes. 

Naming conventions make programs more understandable by making them easier 

to read. They can also give information about the function of the identifier-for example, 

whether it's a constant, package, or class-which can be helpful in understanding the code. 

S/N Identifier Type Rules for Naming Examples 

1. Packages The prefix of a unique package name is 
always written in all-lowercase ASCII 
letters and should be one of the top-
level domain names, currently com, edu, 
gov, mil, net, org, or one of the English 
two-letter codes identifying countries as 
specified in ISO Standard 3166, 1981.  
Subsequent components of the package 
name vary according to an 
organization's own internal naming 
conventions. Such conventions might 
specify that certain directory name 
components be division, department, 
project, machine, or login names.  

org.w3c.dom.* 
 
javax.xml.parsers.* 

2. Classes Class names should be nouns, in mixed 
case with the first letter of each internal 
word capitalized. Try to keep your class 
names simple and descriptive. Use 
whole words-avoid acronyms and 
abbreviations (unless the abbreviation is 
much more widely used than the long 
form, such as URL or HTML). 

class WatchEvent; 
class Monitor; 

3. Interfaces Interface names should be capitalized 
like class names. 

interface RasterDelegate; 
interface Storing; 

4. Methods Methods should be verbs, in mixed case 
with the first letter lowercase, with the 
first letter of each internal word 

run(); 
runApp(); 
getStatus(); 
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S/N Identifier Type Rules for Naming Examples 

capitalized. 

5. Variables Except for variables, all instance, class, 
and class constants are in mixed case 
with a lowercase first letter. Internal 
words start with capital letters. Variable 
names should not start with underscore 
_ or dollar sign $ characters, even 
though both are allowed.  
 
Variable names should be short yet 
meaningful. The choice of a variable 
name should be mnemonic- that is, 
designed to indicate to the casual 
observer the intent of its use. One-
character variable names should be 
avoided except for temporary 
"throwaway" variables. Common names 
for temporary variables are i, j, k, m, and 
n for integers; c, d, and e for characters. 

Int i; 
char c; 
float iSpeed; 

6. Constants The names of variables declared class 
constants and of ANSI constants should 
be all uppercase with words separated 
by underscores ("_"). (ANSI constants 
should be avoided, for ease of 
debugging.) 

static final int FRM_WIDTH = 400; 
 
static final int MAX_WIDTH = 999; 
 
static final String HTTP_Accept = 
"Accept:" 

Table 20. Java Source Code Naming Convention [after JavaCodeConvention 1999]. 
 

S/N Item 

1. CamelCaseNaming: capitalize each word, never use abbreviations, strive for clarity, and be 
brief but complete.  

2. Ensure consistent capitalization throughout. Of note: Windows systems are not case sensitive, 
but http servers are. Thus mismatched capitalization can hide target files, and this error only is 
revealed when placed on a server.  

3. Naming conventions apply to .x3d files, image files, and Prototypes. It is also a good idea to 
follow them for DEF/USE names.  

4. startWithLowerCaseLetter when defining field names for Prototypes and Scripts. This approach 
matches the node and field naming conventions in the X3D Specification.  
When multiple files pertain to a single entity, start with the same name so that they will 
alphabetize adjacent to each other in the catalog and the directory listings. Examples: 
WaypointInterpolatorPrototype.x3d WaypointInterpolatorExample.x3d 
WaypointInterpolatorExample.png  

5. Good choice of directory & subdirectory names can help keep scene names terse. 

Figure 55.   X3D Naming Convention [X3DHints 2004]. 

 

 



68 

 

K. TOOLS AND PRODUCTS 

1. Overview 
This section provides a brief description on the applications that are bundled with 

the current version of AUV Workbench.  There are two built-in functionalities in the 

Workbench’s application toolbar, namely the About and Screenshot buttons.  As the name 

implies, the About button pops up an image that describes the AUV Workbench.  The 

image can be easily changed by replacing the image named SplashScreen.jpg in the 

/image subdirectory.  As a collaboration tool, there is always a need to share the current 

picture in the AUV Workbench.  This may include a view of the mission script and the 

3D view of the environment.  Thus a fast one-button click screen-capture capability has 

been added to the Workbench.  

 
Figure 56.   Splash-screen poster image describing the AUV Workbench, produced by the 

author. 

 
Figure 57.   Screen-capture button on the Application Toolbar. 

 

 

 



69 

2. Jabber Instant Messaging (IM) Client 
A useful tool to facilitate near-real time text messaging between human operators 

is an Instant Messaging (IM) client.  Through the Jabber client, a developer can log onto 

a AUV Workbench chat-room and post questions or answers to fellow developers.  

Similarly, human operators are able to use the Jabber client to post mission related 

information (e.g., location of a mine).  All messages posted via the Jabber clients can be 

logged on the Jabber server.  This is useful for post-mission analysis by operational users 

or consolidation of a trouble-shooting guide for developers.   

<Application name="Jabber"  
    tooltip="Instant Messaging Client" image="image/jabber.gif"> 
   <Command>C:/Program Files/RhymBox/RhymBox.exe</Command> 
   <Command>D:/Program Files/RhymBox/RhymBox.exe</Command> 
   <Command>C:/Program Files/IM/RhymBox/RhymBox.exe</Command> 
</Application> 

Figure 58.   Jabber application setting in the AUV Workbench configuration file 

RhymBox is a Jabber client for instant messaging.  The Jabber network employs a 

distributed and secure infrastructure.  The Jabber protocol is based on the IETF supported 

XMPP.  Jabber is also linked to legacy services (e.g., Yahoo!, MSN, AIM, ICQ, etc). 

 
Figure 59.   Rhymbox Jabber client main user interface. 
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Figure 60.   Rhymbox Jabber client “Chat-room” interface. 

 

 
Figure 61.   Rhymbox Jabber client “Settings” interface. 
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Figure 62.   Rhymbox Jabber client “Console” interface. 

 
3. Internet Browser 
One of the essential tools required in a collaboration environment is an Internet 

Browser.  The browser allows both users and developers to access the World Wide Web 

to find information. 

 
Figure 63.   Microsoft Internet Explorer 6.0 browser user interface. 

Once the “Browser” button is clicked, the application looks for the first available 

browser through the list of possible browser applications, i.e., defined in the Command 
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stanza.  A default web-page can be specified using the param attribute. This allows users 

to be directed to the relevant web-page (e.g., AUV Workbench development) upon 

browser startup. 

<Application name="Browse" tooltip="Web Browser"  
             image="image/browser.gif"  
             show="true" content-type="text/html"  
             param="intranet.nps.navy.mil"> 
   <Command>C:/Program Files/mozilla.org/Mozilla/mozilla.exe</Command> 
   <Command>D:/Program Files/mozilla.org/Mozilla/mozilla.exe</Command> 
   <Command>C:/Program Files/Internet Explorer/IEXPLORE.EXE</Command> 
   <Command>D:/Program Files/Internet Explorer/IEXPLORE.EXE</Command> 
</Application> 

Figure 64.   Internet Browser entry in the AUV Workbench configuration file. 

 

4. X3D-Edit 
X3D-Edit is a graphics file editor for Extensible 3D (X3D) Graphics that enables 

simple error-free editing, authoring and validation of X3D or VRML scene-graph files. 

Context-sensitive tooltips provide concise summaries of each VRML node and attribute. 

These tooltips simplify authoring and improve understanding for novice and expert users 

alike.  

X3D-Edit uses the X3D 3.0 tagset defined by the X3D 3.0 Document Type 

Definition (DTD) in combination with Sun's Java, IBM's Xeena XML editor, and editor 

profile configuration files.  More information on X3D-Edit can be found at 

http://www.web3d.org/x3d/content/README.X3D-Edit.html. 
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Figure 65.   X3D-Edit Graphical User Interface (GUI) for developing 3D objects and scenes 

using X3D. 
 

<Application name="X3D-Edit"  
             tooltip="X3D Editor" image="image/x3d.gif"> 
   <Command>C:/www.web3d.org/TaskGroups/x3d/translation/X3D-Edit.bat 
   </Command> 
   <Command>D:/www.web3d.org/TaskGroups/x3d/translation/X3D-Edit.bat 
   </Command> 
</Application> 

Figure 66.   X3D-Edit entry in the AUV Workbench configuration file. 

 

5. jEdit 

jEdit is a cross-platform programmer's text editor written in Java, being developed 

by Slava Pestov and others. It is available online at http://www.jedit.org. It has an easy to 

use interface that resembles that of many other Windows and MacOS text editors. It is 

also highly customizable, and contains a “plugin” architecture that allows its features to 

be extended by additional programs. 
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jEdit contains a large assortment of features for manipulating source code, 

markup text, and other text files. As a programmer's text editor, it also has many features 

to help programmers manage their projects and work with other programming tools. 

 

 
Figure 67.   jEdit User Interface running on Windows platform. 

 

Text editing can be different on different operating systems (Carriage Return 

versus Carriage Return-Line Feed differences), and also some default text editors are 

notoriously poor (e.g. Windows Notepad), jEdit is bundled with the NPS AUV 

Workbench. This tool ensures that users can perform simple editing tasks on 

configuration and output files, thus simplifying use and remote debugging support. 

A plugin is an application that is designed to work with jEdit by providing 

additional features that can be used from within the main program. Often the plugin will 

provide a visible user interface in a window that can be docked to jEdit's main view 

window.  There are currently over 60 publicly available plugins that provide such 

services as a Java source code browser, a command-line shell, templated text insertion, 

and source code project management. They can be downloaded, installed, and kept 

current from within jEdit's “Plugin Manager”.  
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Figure 68.   jEdit Plugin Manager. 

 
<Application name="JEdit" tooltip="JEdit" image="image/jedit.gif"> 
   <Command>C:/Program Files/jEdit 4.1/jedit.exe</Command> 
   <Command>D:/Program Files/jEdit 4.1/jedit.exe</Command> 
</Application> 

Figure 69.   jEdit entry in the AUV Workbench configuration file. 
 

The jEdit homepage, located at http://www.jedit.org  (Accessed on 28 January 

2004) contains the latest version of jEdit, along with plugin downloads. There is also a 

user-oriented site, http://community.jedit.org  (Accessed on 28 January 2004). 

 

6. AUV Data Server 
The NPS AUV Data Server (ADS) is a tool for post-mission analysis.  It is able to 

read the actual AUV telemetry data from several different AUV sources and generate a 

3D view of the mission in VRML or X3D.  ADS has processed data retrieved from the 

Woods Hole Oceanographic Institution (WHOI), REMUS, Florida Atlantic University 

Ocean Explorer (OEX), and NPS ARIES AUVs. ADS parses robot telemetry as well as 

mission asset (track), bathymetry and contact reports.  These data files are converted into 

Message Transfer Format (MTF) message format and imported into Mine Warfare 

Environmental Decision Aids Library (MEDAL).   The MEDAL format is used by the 

US Navy to evaluate asset positions, mine-like contacts, snipped images of those contacts 

identified as mines and bathymetry maps. It provides a network message interface to 

GCCS MEDAL systems and also produces X3D mission visualizations.   
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Figure 70.   ADS data source panel user interface. 

 

 
Figure 71.   ADS data destination panel user interface. 
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Figure 72.   ADS-generated VRML scene from AUV data. 

 

<Application name="ADS" tooltip="AUV Data Server"  
             image="image/3cubes.gif" show="true"> 
 <Command>C:/auv/ADS/AuvDataServer.bat</Command> 
 <Command>D:/auv/ADS/AuvDataServer.bat</Command> 
</Application> 

Figure 73.   ADS entry in the AUV Workbench configuration file. 

 

L. SUMMARY 
The NPS AUV Workbench has integrated years of work by students and faculty 

to form a stable code base whereby continued research and development can be 

supported.  The flexibility of the Workbench has made it simple enough for day-to-day 

users to get started, and at the same time allowed developers to add new tools and 

modules with ease.  During the course of this thesis, two new modules were added. One 

supports Recursive Ray Acoustics (RRA) visualization and was by LT Scott Rosetti, 

USN The other module supports the compression of mission data using XML Schema-

based Binary Compression (XSBC) [Serin 2003] created by LCDR Duane Davis, USN, 

on. 
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IV. MESSAGE EXCHANGE TECHNIQUES AND 
TRANSPORT PROTOCOLS 

A. INTRODUCTION 
The major advantages of XML for interoperability of data are its extensibility and 

its ability to represent all forms of data, including graphics such as Virtual Reality 

Modeling Language, VRML or Extensible 3D Graphics (X3D) in text format. As systems 

get more complex, the need to transfer binary data as part of the XML document arises. 

This chapter presents possible ways to efficiently package and transport both textual and 

binary XML-based data via Extensible Messaging and Presence Protocol (XMPP).  In 

addition, the design and technical implementations of possible applications using this 

data exchange technique are discussed. 

 
B. COMPRESSION AND DECOMPRESSION USING JAVA.UTIL.ZIP 

Compression and decompression are often applied to data to reduce network 

traffic during transportation and improve the performance of client/server applications.  

Likely candidates for applying compression and decompression are text-based files such 

as Scalable Vector Graphics (SVG), VRML and X3D, along with uncompressed image 

formats, for example 24-bit image files.   

This section presents a brief introduction to data compression and decompression, 

and shows how to compress and decompress data (in physical files and objects) 

efficiently and conveniently from within Java applications using the java.util.zip package. 

While it is possible to compress and decompress data using tools such as WinZip, 

gzip, and Java ARchive (JAR), these tools are used as standalone applications. It is 

possible to invoke these tools as separate applications from within a Java application, but 

this is not a portable, straightforward or efficient approach. Drawbacks of launching 

compression applications are especially problematic if data needs to be compressed and 

decompressed on the fly. 

The java.util.zip package for zip-compatible data compression provides classes 

to read, create, and modify ZIP and GZIP file formats. The package also provides utility 

classes for computing checksums of arbitrary input streams that can be used to validate 
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input data. This package provides one interface, fourteen classes, and two exception 

classes.  For file manipulations, there are three main classes for the manipulation of 

objects and two classes for data streams. 

 
1. Zipping Files 
The java.util.zip package provides classes for data compression and 

decompression.  The main classes are ZipInputStream for reading ZIP files and 

ZipOutputStream for writing ZIP files.  The ZipInputStream class reads ZIP files 

sequentially, whereas the class ZipFile reads the contents of a ZIP file using a random 

access file internally so that the entries of the ZIP file do not have to be read sequentially. 

S/N Class Type Description 

1. ZipEntry Class Represents a ZIP file entry 

2. ZipFile Class Used to read entries from a ZIP file 

3. ZipInputStream Class An input stream filter for reading files in the ZIP file format 

4. ZipOutputStream Class An input stream filter for writing files to the ZIP file format 

Table 21. Classes for File Compression and Decompression. 
 

a. Compressing and Archiving Data to a ZIP File  
The ZipOutputStream can be used to compress data to a ZIP file. The 

ZipOutputStream writes data to an output stream in a ZIP format.  A sample procedure is 

given below. 
import java.io.*; 
import java.util.zip.*; 
public class ZipStreamCS { 
   static final int BUFFER = 2048; 
   public static void main (String argv[]) { 
      try { 
         BufferedInputStream origin = null; 
         FileOutputStream dest = new  
                          FileOutputStream("ZipStreamCS.zip"); 
         CheckedOutputStream checksum = new  
                             CheckedOutputStream(dest, new Adler32()); 
         ZipOutputStream out = new  
                         ZipOutputStream(new  
                             BufferedOutputStream(checksum)); 
 
         byte data[] = new byte[BUFFER]; 
 
         // get a list of files from current directory 
         File f = new File("."); 
 
         // list of files to be zipped 
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         String files[] = {"sample.bmp", "links.txt"}; 
         // or retrieve all files in current directory, f.list(); 
 
         for (int i=0; i<files.length; i++) { 
            System.out.println("Adding: "+ files[i]); 
            FileInputStream fi = new  
                            FileInputStream(files[i]); 
            origin         = new BufferedInputStream(fi, BUFFER); 
            ZipEntry entry = new ZipEntry(files[i]); 
            out.putNextEntry(entry); 
            int count; 
            while((count = origin.read(data, 0, BUFFER)) != -1) { 
               out.write(data, 0, count); 
            } 
            origin.close(); 
         } 
         out.close(); 
      } catch(Exception e) { 
         e.printStackTrace(); 
      } 
   } 
} // ZipStreamCS 

Figure 74.   File compression code snippet. 

 

b. Decompressing and Extracting Data from a ZIP File  
The java.util.zip package provides classes for data compression and 

decompression. The java.util.zip package provides a ZipInputStream class for reading 

ZIP files. Below is the sample code to perform decompression: 
import java.io.*; 
import java.util.zip.*; 
 
public class UnZipStreamCS { 
   public static void main (String argv[]) { 
      try { 
         final int BUFFER = 2048; 
         BufferedOutputStream dest = null; 
         FileInputStream fis = new  
                    FileInputStream(argv[0]); 
         CheckedInputStream checksum = new  
                            CheckedInputStream(fis, new Adler32()); 
         ZipInputStream zis = new  
                        ZipInputStream(new  
                                    BufferedInputStream(checksum)); 
         ZipEntry entry; 
         while((entry = zis.getNextEntry()) != null) { 
            System.out.println("Extracting: " +entry); 
            int count; 
            byte data[] = new byte[BUFFER]; 
 
            // write the files to the disk 
            FileOutputStream fos = new  
                             FileOutputStream(entry.getName()); 
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            dest = new BufferedOutputStream(fos, BUFFER); 
            while ((count = zis.read(data, 0, BUFFER)) != -1) { 
               dest.write(data, 0, count); 
            } 
            dest.flush(); 
            dest.close(); 
         } 
         zis.close(); 
      } catch(Exception e) { 
         e.printStackTrace(); 
      } 
   } 
} // UnZipStreamCS 

Figure 75.   File Decompression code snippet. 

 

c. ZIP File Properties  
The ZipEntry class describes a compressed file stored in a ZIP file. The 

various methods contained in this class can be used to set and get pieces of information 

about the entry.  These methods include retrieving information such as original size, 

compressed size and time of compression. This class is used by the ZipFile and 

ZipInputStream to read ZIP files, and the ZipOutputStream to write ZIP files. 

 

2. Gzipping Objects 
The ZIP format is record-based, thus suitable for file-based compression, but is 

not suited to manipulate objects or data streams. The GZIP is more appropriate as it 

operates on a single stream of data making it well suited for transferring large objects 

over sockets. The objects are compressed before sending across the network and 

decompressed upon arrival at their destination. 

S/N Class Type Description 

1. GZIPInputStream Class An input stream filter for reading compressed data in the 
GZIP file format 

2. GZIPOutputStream Class An output stream filter for writing compressed data in the 
GZIP file format 

Table 22. Classes for Object Compression.  
 

// write to GZipMission object to gzipped file 
 
import java.io.*; 
import java.util.zip.*; 
 
public class GZipSaveMission { 
   public static void main(String argv[]) throws Exception { 
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      // create some objects 
      GZipMission auv_day1 = new GZipMission("23 Mar 2004", 1, 2); 
      GZipMission auv_day2 = new GZipMission("24 Mar 2004", 29, 67); 
 
      // serialize the objects auv_day1 and auv_day2 
      FileOutputStream fos   = new FileOutputStream("gzip_db"); 
      GZIPOutputStream gz    = new GZIPOutputStream(fos); 
      ObjectOutputStream oos = new ObjectOutputStream(gz); 
 
      oos.writeObject(auv_day1); 
      oos.writeObject(auv_day2); 
 
      oos.flush(); 
      oos.close(); 
      fos.close(); 
   } // main 
} // GZipSaveMission 

Figure 76.   Object Compression code snippet. 
 

// read from gzipped GZipMission object 
 
import java.io.*; 
import java.util.zip.*; 
 
public class GZipReadMission { 
   public static void main(String argv[]) throws Exception{ 
 
      //deserialize objects “auv1” and “auv2” 
      FileInputStream fis   = new FileInputStream("gzip_db"); 
      GZIPInputStream gs    = new GZIPInputStream(fis); 
      ObjectInputStream ois = new ObjectInputStream(gs); 
 
      GZipMission auv1 = (GZipMission) ois.readObject(); 
      GZipMission auv2 = (GZipMission) ois.readObject(); 
 
      //print the records after reconstruction of state 
      auv1.print(); 
      System.out.println("---------------------------------"); 
      auv2.print(); 
 
      ois.close(); 
      fis.close(); 
   } // main 
} // GzipReadMission 

Figure 77.   Object Decompression code snippet. 

 

3. Java Archive (JAR) Format 
The JAR format is based on the standard ZIP file format but adds an optional 

manifest file. The java.util.jar package provides classes for reading and writing JAR 

files. Using the classes provided by the java.util.jar package is similar to using the 
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classes provided by the java.util.zip package shown earlier.  A sample manifest file is 

given in Figure 78. 

Manifest-Version: 1.0 
Main-Class: AMVW 
Class-Path: ../lib/smack.jar ../lib/smackx.jar ../lib/xercesImpl.jar 
../lib/xml-apis.jar ../lib/xmlParserAPIs.jar ../lib/xalan.jar 
%JAVA_HOME%/jre/lib/ext/vecmath.jar %JAVA_HOME%/jre/lib/ext/j3dcore.jar 
%JAVA_HOME%/jre/lib/ext/j3dutils.jar ../lib/dis-java-vrml.jar 
../lib/Jama.jar ../lib/j3d-org.jar ../lib/xj3d-all.jar ../lib/uri.jar 
../lib/js.jar ../lib/vlc_uri.jar ../lib/httpclient.jar 
max-heap-size: 256m 

Figure 78.   Sample Manifest.mf file for Java Archive. 
 
4. Checksums 
Checksums can be used to mask corrupted files or messages. Once a compressed 

file has been transferred to the remote machine, the checksum value can be used to detect 

whether the file was corrupted during the transmission. 

The Adler32 and CRC32 classes in the java.util.zip package, which implement 

the java.util.zip.Checksum interface, are used to compute the checksums required for data 

compression. The Adler32 algorithm is normally preferred as it faster than the CRC32 

and it is as reliable. The getValue() and reset() methods are provided to access the current 

checksum value or reset it to the default.  

S/N Class Type Description 

1. Checksum Interface Represents a data checksum. Implemented by the 
classes Adler32 and CRC32 

2. Adler32 Class Used to compute the Adler32 checksum of a data 
stream 

3. CheckedInputStream Class An input stream that maintains the checksum of the 
data being read. 

4. CheckedOutputStream Class An output stream that maintains the checksum of the 
data being written 

5. CRC32 Class Used to compute the CRC32 checksum of a data 
stream 

Table 23. Classes for Checksum. 
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C. BINARY TO TEXT ENCODING AND DECODING 
Embedding the byte values from the binary data file into an XML document will 

not work due to the XML specification's valid-character restriction and character 

encoding and decoding as the document travels from its source to its parsing destination.  

According to the XML 1.0 specification, valid character values include the 

following ranges of hexadecimal values: 0x9, 0xA, 0xD, 0x20-0xd7ff, 0xe000-0xfffd, 

and 0x10000-0x10ffff. The specification also states that all processors are required to 

automatically support (and detect) the UTF-8 and UTF-16 encodings.  Therefore if one of 

these two encodings is used when serializing XML documents, there is no need for an 

XML declaration (unless you need to specify version or standalone information): 

<?xml version="1.0" encoding="UTF-8"?> 
<!-- the text ‘encoding="UTF-8"’ is optional --> 

The ISO/IEC 10646 standard published in 1993 by the International Standards 

Organization (ISO) specifies the encoding of characters used to convert every written 

language into binary form to provide compatibility between multilingual encodings and 

most existing software applications that use the ASCII standard. The ISO has defined 

many transformations including the UTF-8 and UTF-16 encodings. 

 

1. Brute-Force Approach 
The direct approach to solving this encoding problem converts each binary data 

byte into its two-character hexadecimal representation. In doing so, the 256 possible byte 

values are encoded using two characters from the hexadecimal character set “0-9”, “A-

F”:  

byte[] buffer = readFile(filename); 
int readBytes = buffer.length; 
StringBuffer hexData = new StringBuffer(); 
for (int i=0; i < readBytes; i++) { 
   hexData.append(padHexString (Integer.toHexString(0xff & buffer[i])));
} 

A StringBuffer rather than plain String concatenation is used to build the binary 

buffer's resulting character representation in order to avoid the unnecessary cost of 

repeatedly creating and then releasing String class instances. A possible way to accelerate 

the conversion is to use a hexadecimal number lookup table as shown below: 
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public final static String[] _hexLookupTable = { "00", "01", .. ,"fe", 
"ff" }; 
 
for (int i=0; i < readBytes; i++) { 
   hexData.append(_hexLookupTable[0xff & buffer[i]]); 
} 

With this approach, for each byte in the original binary file, two characters are 

generated in the resulting XML document. Algorithmatically, this approach is reasonably 

efficient. One of the disadvantages of this approach is that it wastes network bandwidth, 

which is an important consideration when transferring large binary data files.  

 
2. Base-64 Encoding Approach 
The next approach is the Base-64 encoding conversion. Developers have 

historically used this approach to encode binary data within mail messages before 

transporting them through mail servers that allow relatively short lines of 7-bit data units.  

The Base-64 encoding algorithms is described in Request for Comments (RFC) 

2045 - Multipurpose Internet Mail Extensions (MIME). To encode the data, each 3-byte 

sequence parcels into four 6-bit numbers. Each 6-bit number is then replaced by the 

corresponding US-ASCII character in the Base-64 alphabet to represent binary data and 

character ‘=’ for padding (i.e., byte stream's last one or two byte portions).  The character 

set is “A-Z, a-z, 0-9, +, and /”. Carriage Return Line Feed (CRLF) characters are inserted 

into the output stream to keep the line lengths less than 76 characters, this line length 

restriction does not apply when transmitting binary data as part of an XML document. 

 
Figure 79.   Base-64 encoding illustrated 3-byte stream converted to four 6-bit data units.  
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The advantage of this approach over the brute force method is that it encodes 

three data bytes using four characters resulting in an encoded document that is only 33 

percent larger than the original binary document rather than 100 percent longer using the 

previous method. Compared to the previous approach, 1.33 characters per byte are 

generated instead of two characters per byte.  

Another advantage of Base-64 is that it has been widely used and many 

implementations are available freely. As an example, this thesis uses the already available 

class org.apache.soap.encoding.soapenc.Base64 in the Apache SOAP 2.3.1 

implementation. In terms of conversion performance, the approach is fast since it consists 

of binary shift and table lookup operations.  A sample base-64 encoded document is 

given below.  The base-64 encoded content is stored in the CDATA section of the XML 

document.  

<?xml version="1.0" encoding="UTF-8"?> 
<AgentJabber> 
    <AgentPayload> 
<![CDATA[H4sIAAAAAAAAAO3QsU0DQRhE4Tsw4FKogBxyenIRboaABmjquDNISKsXTPZWaOb
TybDR0//2/vW53PZyWpbn/fe6f6/rsqzL+fZ+/Vj+tv5++y77tw1/XC4//2zbtnRd9z+3nee
jBwA9AOgBQA8AegDQA4AeAPQAoAcAPQDoAUAPAHoA0AOAHgD0AKAHgPHhcYKNjXbPsd4pW++
UrXfK1jtl652y9U7ZeqdsvVO23ilb75Std8rWO2XrnbL1TtnGO81ADwB6ANADgB4A9ACgBwA
9AOgBQA8AegDQA4AeAPQAoAcAPQDoAUAPAHoA0AOAHgD0AKAHAD0A6AFADwB6ALjb5qMHAD0
A6AFADwB6ANADgB4A9ACgBwA9AOgBQA8AegDQA4AeAPQAoAcAPQDoAUAPAHoA0AOAHgD0AKA
HAD0A6AFADwDjwzrBxka751jvlK13ytY7ZeudsvVO2XqnbL1Ttt4pW++UrXfK1jtl652y9U7
Zeqds451moAcAPQDoAUAPAHoA0AOAHgD0AKAHAD0A6AFADwB6ANADgB4A9ACgBwA9AOgBQA8
AegDQA4AeAPQAoAcAPQCctvnoAUAPAHoA0AOAHgD0AKAHAD0A6AFADwB6ANADgB4A9ACgBwA
9AOgBQA8AegDQA4AeAPQAoAcAPQDoAUAPAHoA0APA+HA/wcZGu+dY75Std8rWO2XrnbL1Ttl
6p2y9U7beKVvvlK13ytY7ZeudsvVO2XqnbOOdZqAHAD0A6AFADwB6ANADgB4A9ACgBwA9AOg
BQA8AegDQA4AeAPQAoAcAPQDoAUAPAHoA0AOAHgD0AKAHAD0APG3z0QOAHgD0AKAHAD0A6AF
ADwB6ANADgB4A9ACgBwA9AOgBQA8AegDQA4AeAPQAoAcAPQDoAUAPAHoA0AOAHgD0AKAHgPH
hYYKNjXbPsd4pW++UrXfK1jtl652y9U7ZeqdsvVO23ilb75Std8rWO2XrnbL1TtnGO81ADwB
6ANADgB4A9ACgBwA9AOgBQA8AegDQA4AeAPQAoAeAb02mddvKvQAA]]> 
    </AgentPayload> 
</AgentJabber> 

Figure 80.   Sample XML document with base-64 encoded data in CDATA section. 
 
3. Complex and Proprietary Algorithms  
For more efficient binary to text encoding, complex algorithms such as Huffman 

can be employed.  At the same time, it is possible to treat binary to text encoding as a 

form of encryption through the use of a complex and proprietary encoding scheme.  

Similarly encryption algorithms can be introduced during the compression process.  

Thus, receiving clients will require a proper implementation of the encoding algorithm to 
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decode the binary data from the XML messages necessitating the deployment of 

dedicated clients or libraries.  This also brings into play the issues of software updates, 

correct implementation/program invocation and efficient deployment of new versions.  

This is opposed to Base-64 encoding, which is well-known and easily implemented.   

In the article “Transfer binary data in an XML document” [Pentakalos 2001], the 

author implemented a simple Huffman encoding algorithm that uses the binary data set 

statistical properties to compress the encoded character stream. For many data sets, if a 

histogram is constructed for each byte value's occurrence frequency within the data set, 

an uneven distribution can be observed, where some bytes are used frequently while 

others rarely or not at all.  

A properly customized Huffman coding can take advantage of this statistical 

property to reduce the average code length. Most frequently used bytes are represented in 

single characters or short character sequences, and the least frequently used with longer 

character sequences. For cases where the distribution is highly skewed towards a byte 

value subset, this encoding approach is effective, but it is not as effective for cases where 

the distribution is fairly uniform.  

 

D. MESSAGING PROTOCOLS 

1. Simple Mail Transfer Protocol (SMTP) 
The objective of Simple Mail Transfer Protocol (SMTP) is to transfer mail 

reliably and efficiently.  SMTP is independent of the particular transmission subsystem 

and requires only a reliably ordered data-stream channel.  Mail via SMTP is a widely 

supported capability that can be used for messaging across firewalls. 

An important feature of SMTP is its capability to relay mail across transport 

service environments.  A transport service provides an inter-process communication 

environment (IPCE) that may cover one network, several networks, or a subset of a 

network.  It is important to realize that IPCEs do not have a one-to-one relationship with 

networks.  A process can communicate directly with another process through any 

mutually known IPCE.  Email is one example of an application relying on IPCEs.  Mail 

can be communicated between processes in different IPCEs by relaying through a process 
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connected to two (or more) IPCEs.  More specifically, mail can be relayed between hosts 

on different transport systems by a host on both transport systems. 

 

2. File Transfer Protocol (FTP) and Secure FTP (SFTP) 
The objectives of FTP are 1) to promote sharing of files, 2) to encourage indirect 

or implicit (via programs) use of remote computers, 3) to shield a user from variations in 

file storage systems among hosts, and 4) to transfer data reliably and efficiently.  FTP, 

though usable directly by a user at a terminal, is designed mainly for use by programs.  

The FTP specification attempts to satisfy the diverse needs of users of maxi-hosts, mini-

hosts and personal workstations, with a simple and easily implemented protocol design.   

Files being transferred by FTP are vulnerable to man-in-the-middle attacks where 

data is intercepted and altered before sending it on its way.  Various products have been 

developed to resolve the security problems with FTP.  Some SFTP products use Secure 

Socket Layer (SSL) algorithm to perform the encryption, however, worth noting is that 

this approach should not be confused with the common use of SSL for browser-based file 

transfer encryptions. SSL by itself is limited in its capabilities. FTP and SFTP allow users 

to change directories, list directories, and grab entire batches and directories of files in 

one fell swoop.  SSL is generally used for getting files, and is rather limited when used 

for putting batches of raw files in remote locations. While SSL is well-suited for short 

online web-based financial transactions, since it requires no special client-side software 

except a browser, it is not appropriate for large-scale batch file transfers due to the high 

computation costs (and correspondingly long delay times) of encryption/decryption. 

 

3. HyperText Transport Protocol (HTTP) Get/Post and Secure 
Hypertext Transfer Protocol (HTTPS) 

Currently, HTML forms allow the producer of the form to obtain information 

from users.  These forms have proven useful in a wide variety of applications in which 

user input is necessary, however, this capability is limited because HTML forms do not 

provide a way to ask the user to submit files of data.  Service providers requiring files 

from the user have had to implement custom user applications.   Since file upload is a 

feature that will benefit many applications, this thesis proposes an extension to HTML to 
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allow information providers to express file upload requests uniformly, and a MIME 

compatible representation for file upload responses.  Also included is a description of a 

backward compatibility strategy that allows new servers to interact with the current 

HTML user agents.   

HTTPS is a secure message-oriented communications protocol designed for use in 

conjunction with HTTP. HTTPS is designed to coexist with HTTP's messaging model 

and to be easily integrated with HTTP applications.   Syntactically, Secure HTTP 

(HTTPS or S-HTTP) messages are the same as HTTP, consisting of a request or status 

line followed by a header and body. However, the range of headers is different and the 

bodies are typically cryptographically enhanced.  HTTPS messages, just as the HTTP 

messages, consist of requests from client to server and responses from server to client.  

HTTPS does not require client-side public key certificates (or public keys), as it 

supports symmetric key-only operation modes. This is significant because it means that 

spontaneous private transactions can occur without requiring individual users to have an 

established public key.  URLs that begin with 'https' are handled using the SSL algorithm 

(now commonly termed as Transport Level Security - TLS) that sets up a secure, 

encrypted link between a Web browser and a Web server.  SSL is the industry standard 

protocol for secure, web-based communications and transactions and is implemented as 

an optional protocol layer that fits between the TCP and HTTP protocol layers.   

 

4. Messaging Queue System (e.g., Java Messaging Service) 
The Java Message Service (JMS) API is an API for accessing enterprise 

messaging systems. It is part of the Java 2 Platform, Enterprise Edition (J2EE).  

JMS is designed to make it easy to write business applications that 

asynchronously send and receive critical business data and events. It defines a common 

enterprise messaging API that can be easily and efficiently supported by a wide range of 

enterprise messaging products. JMS supports both message-queuing and publish-

subscribe styles of messaging.  

JMS messages are asynchronous requests, reports, or events that are consumed by 

enterprise applications, not humans. They contain vital information needed to coordinate 
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these systems and contain precisely formatted data describing specific business actions. 

Through the exchange of these messages, each application tracks the progress of the 

enterprise.  

 
5. Jabber/Chat Using Extensible Messaging and Presence Protocol 

(XMPP) 
Jabber is a set of streaming XML protocols and technologies that enable any two 

entities on the Internet to exchange messages, presence, and other structured information 

in near-real time. Jabber is an open, platform independent messaging framework based on 

XML for real-time extensible messaging and user presence. The basic Jabber application 

is an instant messaging (IM) network that offers functionality similar to legacy IM 

services such as AIM, ICQ, MSN, and Yahoo. However, Jabber is more than just IM, and 

Jabber technologies offer several key advantages.  The Internet Engineering Task Force 

(IETF) is currently formalizing the core XML streaming protocols as an approved instant 

messaging and presence technology under the name of XMPP.  The following sections 

explore the use of Jabber protocol for both human and machine message passing such as 

agent-to-agent communications. 

S/N Protocol Pros Cons 

1. Email (SMTP, Microsoft 
mail or similar) 

Open or proprietary 
standards. 

 
Queuing is built-in.  

 
Good for human-to-human 
communications. 

Does not guarantee timely 
delivery 
 
Bad for machine-to-machine, or 
machine-to-human 
communications.   
 
Data is either stored in the 
message body or as an 
attachment.  Additional 
processing required to extract 
the data from attachments. 
 
Text-only data types. Depending 
on applications, rich-text and 
HTML formats may be 
supported. 
 
By default, message expiry 
feature is not available. 

2. File Transfer Protocol 
(FTP) and Secure FTP 

Open standards.  RFC 959. 
 

Queuing is not available; i.e., 
no built-in resend mechanism 

To prevent hackers from 
exploiting anonymous/guest 
users, anonymous/guest user 
IDs are turned off.  User 
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S/N Protocol Pros Cons 

to handle cases when the 
receiving party is not 
available. 

 
Near-real time performance 
using TCP protocol. 

ID/password is either hard-
coded or via operating systems’ 
specific means of 
authentication.  The latter is 
good provided the user 
environment is homogeneous. 
 
Message expiry not available. 

3. HyperText Transport 
Protocol (HTTP) 
Get/Post and Secure 
HTTP (HTTPS) 

Open standards. RFC 1867. 
 
Built-in queuing mechanism. 
 
Near-real time performance 
using TCP protocol. 

Session-less. 
 
Message expiry not available. 

4. Messaging Queue 
System (e.g., Java 
Messaging Service) 

Sun provides a reference 
implementation for its Java 
Messaging Service (JMS) 
specifications. 
 
Built-in queuing mechanism. 
 
 
Support interchange of Java 
objects (JMS only).  
 
“Publish-subscribe” 
mechanism. 
 
Message expiry built-in. 
 
Supports data types. 
 
Provides methods and 
expectations for Quality of 
Service (QoS). 

Vendor-specific (IBM Message 
Queue or Microsoft Message 
Queuing, MSMQ), 
 
 
Proprietary implementations; 
e.g., SonicMQ.  
 
Requires in-depth knowledge. 
 
Open-source implementation 
available (JBoss), but pay for 
support. 
 

5. Jabber/Chat using 
Extensible Messaging 
and Presence Protocol 
(XMPP) 

Open standards. RFC 2779. 
 
Built-in queuing mechanism. 
 
Near-real time performance 
using TCP protocol. 
 
Simple “publish-subscribe” 
mechanism can be achieved 
through chat-rooms. 
 
Ease of implementation. 
 
Messages are XML-based. 

Presence needs to be 
established at start time. 
Text-only data types.  
Workaround by embedding the 
data type information within the 
XHTML stanza. 
 
Message expiry not available. 

Table 24. Comparison of messaging systems and their protocols. 
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E. MESSAGE REPRESENTATION 
Traditional messaging systems (e.g., email) store binary data as an attachment to 

the message subject/body.  With XMPP, all messages are XML-based making it 

necessary to find ways to send binary data via this protocol.  The XMPP protocol 

includes a base protocol and many optional extensions typically documented as Jabber 

Enhancement Proposals (JEPs).  

1. Jabber Enhancement Proposals 

a. Private Data (JEP-49) 
JEP-49 is a mechanism to allow users to store arbitrary XML data on an 

XMPP server. Each private data chunk is defined by an element name and XML 

namespace. Example private data:  

<color xmlns="http://example.com/xmpp/color"> 
    <favorite>blue</blue> 
    <leastFavorite>puce</leastFavorite> 
</color> 

A Jabber client can store any arbitrary XML on the server side by sending 

an iq chunk of type "set" to the server with a query child scoped by the jabber:iq:private 

namespace. The query element may contain any arbitrary XML fragment as long as the 

root element of that fragment is scoped by its own namespace. The data can then be 

retrieved by sending an iq of type "get" with a query child scoped by the 

jabber:iq:private namespace, which in turn contains a child element scoped by the 

namespace used for storage of that fragment. Using this method, Jabber entities can store 

private data on the server and retrieve it whenever necessary. The data stored might be 

anything, as long as it is valid XML. One typical usage for this namespace is the server-

side storage of client preferences. 

 
b. Extensible HyperText Markup Language (XHTML) (JEP-71) 
The JEP-71 proposal defines an adaptation of XHTML 1.0 to provide 

alternative formatting for a text message.   It provides the ability to send and receive 

formatted messages using XHTML.  This pattern is familiar from email, wherein the 

HTML-formatted version of the message supplements, but does not supersede the text-

only version of the message.  In Jabber communications, the meaning (as opposed to 

formatting) of the message must always be represented as best as possible in the normal 
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body child of the message element. Formatting is then provided by the XHTML 

representation of the message content within a html wrapper element. 

<message> 
  <body>hi</body> 
  <html xmlns='http://jabber.org/protocol/xhtml-im'> 
    <body xmlns='http://www.w3.org/1999/xhtml'> 
      <h1>hello</h1> 
    </body> 
  </html> 
</message> 

These two JEPs provide two possible ways to package binary data: 

• Embed a hyperlink to binary data via out-of-band (oob) messages. 

• Embed the binary data in a CDATA section. 

Even though these two methods could be used to represent binary data, one is not 

necessarily a good substitute for another. Alternatively, these methods can be applied to 

complement each other. 

 
Figure 81.   Packaging binary data in a Jabber message. 

 
2. Embed Hyperlink to Binary Data via Out-of-band (oob) Messages 
An out-of-band message is a message x extension that is embedded in a standard 

Jabber message packet (usually a message of type normal).  An oob message contains 

information, typically a url link that clients can use to conduct direct application-to-

application data transfer that bypasses the normal Jabber message routing via the Jabber 

server.  The link typically points to a web or FTP server. 
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Figure 82.   Overview on file transfer using out-of-band (oob) message. 

Out-of-band messages are typically used to arrange transfer of large files that are 

impractical to route via the server.  A sample oob message is given below: 

<iq type='set' id='file_1' to='recipient@surfaris.cs.nps.mil/home'> 
   <query xmlns='jabber:iq:oob'> 
      <desc>Here is the image file u requested.</desc> 
      <url>http://files.nps.mil/sample.bmp</url> 
   </query> 
</iq> 

Although this method reduces network traffic on the Jabber server (note: actual 

traffic required to transport the binary data from one location to another is still the same), 

it introduces a point of failure to the transport mechanism; if the storage server is offline, 

there is no way to retrieve the data.  This problem can be circumvented through the 

introduction of multiple hyperlinks to the same binary data; i.e., each hyperlink pointing 

to different storage locations of the same file. 

<iq type='set' id='file_1' to='recipient@surfaris.cs.nps.mil/home'> 
   <query xmlns='jabber:iq:oob'> 
      <desc>Here is the image file u requested.</desc> 
      <url>http://fileserver1.nps.mil/sample.bmp</url> 
      <url>http://fileserver2.nps.mil/sample.bmp</url> 
      <url>http://fileserver3.nps.mil/sample.bmp</url> 
   </query> 
</iq> 
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3. Embed Binary Data in CDATA Section  
In order to reduce the time required to retrieve data from another location, binary 

data can be embedded within the XML document.  This allows the recipient to process 

the data immediately upon receipt.  By making use of compression and base-64 encoding 

techniques discussed earlier, it is possible to reduce the size and at the same time embed 

binary data in an XML message. To add another layer of reliability to this method, 

multiple hyperlinks to storage locations are added.  This is similar to the technique 

discussed above.  If the encoded/compressed data was corrupted during its delivery, the 

recipient will still be able to retrieve it from a storage server via FTP or HTTP.  (Note: 

Since some firewalls block out FTP traffic, therefore it is better to include links to both 

FTP and HTTP servers.) At the same time, a maximum file size limit can be introduced 

to prevent overloading the Jabber server.  Thus for a large file (e.g., larger than 1MB), the 

CDATA section will not be populated with the encoded binary data, and hyperlinks will 

be used to retrieve the file.  Upon receipt, the client spawns an HTTP or FTP process to 

retrieve the file from the storage location.  A sample XML message (without the Jabber 

message wrapper) and the function to perform base-64 encoding and compression are 

given Appendix E. 

<AgentJabber> 
    <!--Payload 1--> 
    <AgentPayload checksum="1234567"  
        content-transfer-encoding="base-64" 
        content-type="application/x-zip-compressed" 
        desc="The filename is [GAMMA.bmp]"  
        filename="GAMMA_apple.bmp" 
        filesize="48586"  
        timestamp="20040026114827"> 
<![CDATA[H4sIAAAAAAAAAO3QsU0DQRhE4Tsw4FKogBxyenIRboaABmjquDNISKsXTPZWaOb
TybDR0//2/vW53PZyWpbn/fe6f6/rsqzL+fZ+/Vj+tv5++y77tw1/XC4//2zbtnRd9z+3nee
jBwA9AOgBQA8AegDQA4AeAPQAoAcAPQDoAUAPAHoA0AOAHgD0AKAHgPHhcYKNjXbPsd4pW++
UrXfK1jtl652y9U7ZeqdsvVO23ilb75Std8rWO2XrnbL1TtnGO81ADwB6ANADgB4A9ACgBwA
oA0APA+HA/wcZGu+dY75Std8rWO2XrnbL1Ttl6p2y9U7beKVvvlK13ytY7ZeudsvVO2XqnbO
OdZqAHAD0A6AFADwB6ANADgB4A9ACgBwA9AOgBQA8AegDQA4AeAPQAoAcAPQDoAUAPAHoA0A
OAHgD0AKAHAD0APG3z0QOAHgD0AKAHAD0A6AFADwB6ANADgB4A9ACgBwA9AOgBQA8AegDQA4
AeAPQAoAcAPQDoAUAPAHoA0AOAHgD0AKAHgPHhYYKNjXbPsd4pW++UrXfK1jtl652y9U7Zeq
dsvVO23ilb75Std8rWO2XrnbL1TtnGO81ADwB6ANADgB4A9ACgBwA9AOgBQA8AegDQA4AeAP
QAoAeAb02mddvKvQAA]]> 
    <url>http://www.google.com/images/logo.gif</url> 
    </AgentPayload> 
</AgentJabber> 

Figure 83.   Sample XML message with encoded binary data. 
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S/N Name Type Description 

1. AgentJabber Element Root. 

2. AgentPayload Element One or many <AgentPayload> elements under <AgentJabber> 

3. checksum Attribute Numeric checksum value for the byte data stored within CDATA 
section. 

4. content-transfer-
encoding 

Attribute Technique used to encode binary data in CDATA section.  Valid 
values are “base64” and “Huffman”. 

5. content-type Attribute Details of binary data that allows the correct application to 
process it. 

6. desc Attribute File description. 

7. filename Attribute Original file name. 

8. filesize Attribute Original file size in bytes. 

9. timestamp Attribute Date/time value of file creation in “yyyymmddhhmmss” format; 
e.g., 20040115235959 is 15 Jan 2004 at time 23:59:59. 

10. CDATA Element Base64 encoded binary data. 

11. url Element Defines the location where the binary file/data can be found 

Table 25. XML tagset to define the XHTML payload in the Jabber message.  

 

F. DESIGN AND IMPLEMENTATION 

1. Overview 
This section explores possible ways to implement chat clients that enable the data 

exchange of both messages and binary files using Jabber protocol.  The three approaches 

covered in this section are: web-based, standard client and customized Jabber client.  This 

section discusses how an application that makes use of Jabber protocol for 

communications can be implemented.  Technical details on the use of compression and 

base-64 encoding to facilitate message exchange of both textual (e.g., mission scripts) 

and non-textual (e.g., images) data are also covered. 
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Figure 84.   Overview of the three approaches to Jabber instant messaging. 

 
2. Introduction to Jabber Protocol 
A full Jabber ID takes the form [user name]@[Jabber server]/[resource], similar 

to an email address.  A groupchat/chat room takes the form: [chatroom/group 

name]@[Jabber groupchat server]/[nickname]. There are three core Jabber protocols, 

namely: 

• Message.  This is responsible for the delivering of data.  Most of the time, 

it accounts for the bulk of the packet traffic on the Jabber network.  These 

messages can resemble full-scale email messages or form line-by-line 

messages in chat sessions.  This protocol uses the message packet.  A 

sample message packet is given below: 

<message xml:lang=“en-us” 
       to=“savage@conference.xchat.movesinstitute.org” 
       type=“groupchat”> 
<body>This is a test message</body> 
</message> 

Figure 85.   A sample “groupchat” message to “savage” chatroom. 
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<message xml:lang=“en-us” 
       to=“auvrobot@surfaris.cs.nps.navy.mil” 
       type=“chat”> 
       <subject>This is the subject</subject> 
       <body>This is a test message</body> 
</message> 

Figure 86.   A sample chat message to “auvrobot” Jabber user. 

 

S/N Name Type Description 

1. message Element Application to be invoked from toolbar. 

2. xml:lang Attribute Language used. 

3. 
to Attribute Receiver of message packet, i.e., another Jabber user 

or Jabber server. 

4. 
type Attribute An enumeration to indicate message type.  Possible 

values are groupchat and chat. 

5. 
subject Element Message subject.  This is available for chat messages 

only. 

6. body Element Message body. 
Table 26. Message packet types and protocol. 

• Presence.  The basic presence protocol is used in presence update and 

presence subscription management.  Presence update is to inform people 

of the user’s current presence state.  Presences subscription management 

allows people to subscribe to another user’s presence update packet and 

control who has access to their own presence.  This protocol uses the 

presence packet.  A sample presence packet is given below: 

<presence from=“auvrobot@surfaris.cs.nps.navy.mil” 
          to=“savage@conference.xchat.movesinstitute.org” 
          type= “available”> 
 <status>I am now logged on to chatroom.</status> 
 <priority>10</priority> 
 <show>chat<show> 
</presence> 

Figure 87.   A sample “presence” packet from “auvrobot” to “savage groupchat” server. 
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S/N Name Type Description 

1. Presence Element Application to be invoked from toolbar. 

2. from Attribute Sender of presence packet. 

3. to Attribute Receiver of presence packet, normally a Jabber server. 

4. type Attribute An enumeration to indicate presence status.  Possible 
values are “available”, “unavailable”, “subscribe”, “un 
subscribe”, “subscribed”, “un subscribed” and “error”. 

5. status Element User-definable free-form text description to be 
displayed. 

6. priority Element Non-negative integer value to delivery priority for this 
current resource.  Higher numbers have higher priority. 

7. show Element Jabber clients typically use this to display presence 
icons, sound or alerts.  If no show state is indicated, 
the user is in normal or online state.  The other 
possible states are chat, away, xa (extended away) 
and dnd (do not disturb).  

Table 27. “Presence” packet types and protocol. 

 

• Info/Query (IQ).  This handles everything else that does not fall under a 

Message or Presence packet.  It serves as a catch-all protocol.  If a 

protocol is not sending a message, or managing presence, it is an IQ 

protocol.  IQ is a generic request-response protocol and it is designed to be 

easily extensible with IQ extension protocols.  An IQ packet may look like 

the following: 

<iq type=’get’ to=’handlerJID’> 
 <query xmlns=’jabber:iq-auth’> 
       <username>auvcontrol</username> 
 </query> 
</iq> 

A typical Jabber session: 

• Connect with a Jabber server (e.g., xchat.moveinstitute.org). 

• Open a Jabber stream by logging in using user account “auvcontrol”, 

password “auvpwd” on domain “xchat.moveinstitute.org”. 

• Update presence status to “available”. 



101 

3. Web-based Jabber Client 
The components required for this approach are a HTML form running on the 

client’s Internet browser and a Java servlet on the web server to process, package and 

send out the Jabber messages.  An HTML form can be easily implemented using standard 

HTML objects.  Below are some examples of HTML objects used to generate the HTML 

form: 

<!-- Creates a single-line text entry control --> 
<input type="text" name="edtSubject" value="Message Subject" size="30"> 

 
<-- Creates a file upload object with a text box and Browse button. --> 
<input type="file" name="edtFile"> 

 

For a file upload to take place:  

• The INPUT type=file element must be enclosed within a FORM element.  

• A value must be specified for the NAME attribute of the INPUT type=file 

element.  

• The METHOD attribute of the FORM element must be set to post.  

• The ENCTYPE attribute of the FORM element must be set to 

multipart/form-data.  

To handle a file upload, a server-side process must be running that can handle 

multipart/form-data submissions. For this thesis, a Java servlet was implemented to parse 

and package the uploaded HTML data to be sent out as an XHTML Jabber message.  The 

servlet uses the O’Reilly multipart file upload library (com.oreilly.servlet) to extract the 

uploaded file data. 

With a HTML form, user input can be validated before it is sent to the server.  If 

validation is performed on the client web browser, it is likely to be implemented using 

Netscape’s JavaScript or Microsoft’s VBScript.  JavaScript syntax is different from 

VBScript.  Since JavaScript and VBScript are specifically designed to work in browsers, 

they do not include features that are normally outside the scope of scripting, such as file 

access and printing.  JavaScript is preferred for validation code due to compatibility and  
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consistency issues, especially VBScript on different browsers.  Specifically, while 

VBScript is fully supported by Microsoft Internet Explorer, the same cannot be said for 

other browsers.  

At the time of this thesis, a “send-only” HTML form has been developed.  

Therefore the user will still require a Jabber client to view incoming Jabber messages.   A 

possible way to implement a message receive module in the Internet browser is as 

follows.   

• Modify the servlet to listen for incoming messages from one or more chat-

rooms or JIDs.  

• Upon receipt of Jabber messages, convert them to HTML format (include 

date/time for easy reference). This is to be displayed within a HTML 

frame on the client Internet browser. 

• HTML is for display purposes, it does not have the means to actively 

listen for updated web pages.  Thus a simple polling mechanism is 

required.  This example causes the browser to reload the document every 

five seconds, but it causes unnecessary refresh on the web page. 

<meta http-equiv="refresh" content="5; "> 

 

Steps involved in sending a message via the web-based Jabber approach: 

Client: 
• Access to Jabber-enabled website using standard Internet browser. 
• Key-in required data in the HTML Form. 

 
Server: 

• Servlet receives posted HTML data and files, if any. 
• Re-package HTML data to XHTML Jabber format. 
• Get list of recipients from configuration file. 
• Log into Jabber server. 

• Send packaged data as Jabber message to recipients. 
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Figure 88.   Data and file transfer via HTTP-Jabber protocol. 

 

 
Figure 89.   Sample HTML form for posting of data.  
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Figure 90.   Sample HTML form for posting of data and files. 

 

 
Figure 91.   Sample HTML form for Target Events. 

 
4. Standard Jabber Client 
Standard Jabber clients are only able to send and receive standard Jabber 

messages (subject and message body).  Certain clients (e.g., Rhymbox) have a “Console” 

interface that allows the user to key-in and send customized Jabber messages, however 

the files still need to be compressed, binary-to-text encoded and packaged as XHTML 

format before they can be sent out.  The user needs to manually invoke the modules (if 



105 

any) that will perform the conversion, copy-and-paste the textual results into the 

“Console” interface and then send it out.  This process is tedious and diminishes the 

usability of this technique of message exchange, especially when the load increases. 

Steps involved in sending a message via the standard Jabber client approach: 

Client: 
• Log into Jabber server. 
• Key-in message subject and body. 

• Send to specific user IDs or chat-rooms. 
 

 
Figure 92.   Rhymbox Jabber client. 
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Figure 93.   Data exchange using standard Jabber client. 

 
 
5. Customized Jabber Client 
A customized Jabber client can send and receive standard Jabber messages as well 

as messages with embedded binary data.   The customized client automatically packages 

and sends out XHTML messages.  It is also able to mimic an Internet browser and 

perform a HTTP POST of data and files to a Jabber-enabled web site (i.e., deployed with 

the servlet to receive posted data and files). This ability has been incorporated in the 

customized Jabber client for this thesis.  

Of the three proposed solutions, only the customized client is able to re-generate 

the binary data either by decompressing and decoding the embedded data, or by 

retrieving the file from a hyperlink (specified within url tags). Once the data has been re-

generated, it invokes the module or application to display the data.  

The third approach functions both as a backup for Jabber communications and as 

a storage location for binary data that is referenced (in url tags) in the Jabber XHTML 

messages.  Although the customized Jabber client is the most complex and takes the 

longest to develop, it is the most flexible solution. To enable reuse, the customized client 

that has been developed for this thesis is generic. Therefore it can be plugged into any 

application for that requires text and binary data message passing. 
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Figure 94.   Customized Jabber client user interface to send data and files as Jabber message. 

 

 
Figure 95.   Customized Jabber client user interface to display list of incoming Jabber 

messages. 
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Figure 96.   Customized Jabber client user interface – Event Monitoring Criteria. 

 

 
Figure 97.   Data and file transfer via HTTP-Jabber and Jabber protocol. 

 

The following table provides an overview of the three techniques discussed.  For 

this thesis, emphasis was placed on the customized client due to the need to integrate into 

the AUV Workbench.  The web-based solution using HTML form is also a viable 

solution provided there is a way to perform “smart” refresh of posted messages. 
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S/N Description Web-based  Standard Client Customized Client 

1. Components. HTML Form on client 
Internet browser for 
posting of HTML data.  
Java servlet on a web 
server to process 
uploaded data and 
communications with 
Jabber server. 

Standard client. 
Jabber server 
communications. 

Customized client. 
Message processing 
and Jabber 
communications. 

2. Message type. Standard subject-body 
message and complex 
messages with 
embedded binary data 
(able to encode only).  

Standard subject-body 
message. 

Standard subject-body 
message and complex 
messages with 
embedded binary data.  

3. Message validation. Client-side using 
JavaScript or at server-
end. 

None. Customized user 
interface allows for 
complex data 
validation. 

4. Protocol. HTTP-to-Jabber. Jabber only. Jabber and HTTP-to-
Jabber.  The web-
based solution can 
serve as a backup. 

5. Direction of 
communications. 

One-way – Able to send 
message only. 

Send and receive 
messages. 

Send and receive 
messages. 

6. Recipients per 
message 

Able to specify multiple 
recipients.  

One recipient at a 
time. 

Able to specify multiple 
recipients. 

7. Performance. Compared to the other 
two, this is slower since it 
is going through a web 
server. 

Near-real time. Near-real time. 

8. Deployment. Minimal or none.  As 
long as the client has 
access to the web site. 

Required.  Periodic 
software update. 

Required.  Periodic 
software update. 

9. Uses. Report submission.  
Posting of 
happening/events. 

Human-human 
interactions. 

Human-human 
Machine-machine and 
human-machine 
interactions.  
 

Table 28. Comparison of the three approaches. 

 

6. Interior of a Jabber-enabled Agent 
This section provides an overview of how the different pieces of technologies are 

put together, using agents as an exemplar. Each agent makes use of its own unique Jabber 

ID to identify itself within the Jabber network. There are two ways whereby the agents 

can communicate. Peer-to-peer “chat” messages are used for dedicated agent-to-agent 
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communication; whereas “groupchat” messages are used to allow multiple agents to 

listen to and react to messages posted on the chatroom.  The “groupchat” feature is 

similar to a “publish-subscribe” mechanism. 

Once the binary data has been extracted, it can be worked on by other processes 

or saved in a database for archival purposes.  Components of the agent interior are shown 

in Figure 98 and described below. 

 
Figure 98.   Interior of a Jabber-enabled agent. 

 
a. Jabber Communications 
This handles network communications for the Jabber protocol such as 

login, joining chatrooms, initiating chat sessions and listening for messages. 

b. Message Formatting 
Packaging of the message header and its payload is done in this module.  

The message payload includes message subject, body and binary data, if any.  This 

module is responsible for packaging one or multiple files within the same Jabber 

message.  An example with two files is show in Figure 99. 
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<?xml version="1.0" encoding="UTF-8"?> 
<agent-jabber> 
    <!--Payload 1--> 
    <agent-payload checksum="1234567" 
        content-transfer-encoding="base-64" 
        content-type="application/x-zip-compressed" 
        desc="Description here" filename="Tropical Card.svg" 
        filesize="573677" 
        timestamp="20040017184631"> 
        <![CDATA[]]> 
        <url>http://server1/Tropical Card.svg</url> 
        <url>http://server2/Tropical Card.svg</url> 
        <url>http://server3/Tropical Card.svg</url> 
    </agent-payload> 
    <!--Payload 2--> 
    <agent-payload checksum="1111111" 
        content-transfer-encoding="base-64" 
        content-type="application/x-zip-compressed" 
        desc="Description here" filename="Cheshire Cat.svg" 
        filesize="102457" 
        timestamp="20040017184631"> 
        <![CDATA[]]> 
        <url>http://server1/Cheshire Cat.svg </url> 
        <url>http://server2/Cheshire Cat.svg</url> 
        <url>http://server3/Cheshire Cat.svg</url> 
    </agent-payload> 
</agent-jabber> 

Figure 99.   Two files are packaged within the Jabber message. 

 

c. Message Processing 
The message generation process is done prior to sending. Upon receipt, 

processes such as archival into database or flat file can be triggered, in addition to 

invocation of programs to display the binary data; e.g., JPEG and GIF images.  This 

module determines whether the binary data will be embedded in the message.  This is 

based on a predetermined file size (e.g., 1MB).  This prevents overloading the Jabber 

servers and in addition, certain administrators limit the message size.  Therefore it is 

advisable to send small-sized files via the Jabber protocol.  The file data is only stored 

within the CDATA section provided its size is less than the preset limit.  Otherwise the 

CDATA is left empty (See Figure 100), but the header information pertaining to the file, 

such as file name and size, are kept in the message payload. 
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<?xml version="1.0" encoding="UTF-8"?> 
<agent-jabber> 
    <agent-payload checksum="1234567" 
        content-transfer-encoding="base-64" 
        content-type="application/x-zip-compressed" 
        desc="Description here" filename="Tropical Card.svg" 
        filesize="573677" 
        timestamp="20040017184631"> 
        <![CDATA[]]> 
        <url>http://server1/Tropical Card.svg</url> 
        <url>C:\temp2\Tropical Card.svg</url> 
        <url>ftp://ftpserver3/Tropical Card.svg</url> 
    </agent-payload> 
</agent-jabber> 

Figure 100.   Binary data, if present, is embedded within the highlighted CDATA section. 
 

Upon receipt of a message, this module determines whether it needs to 

retrieve from binary data from a hyperlink (i.e., if CDATA section is empty).  Storage 

locations of the binary data file may reside on a web server (e.g., Apache Tomcat), FTP 

server or a dedicated agent with web server functionalities built into it.  With an Apache 

web-server, it needs to be administered. On the other hand, having web server 

functionalities reside in a Jabber-enabled agent reduces the need for additional 

administration.  It may not be advisable, however to burden the agent with additional 

processes. 

Pre-processing activities that are platform or system specific; e.g., image 

segmentation on UAV imagery, are not included as part of the message processing 

module.  This keeps this module generic and thus extensible to other AUV or non-AUV 

platforms, as well as improving the performance of the module.   Pre-processing modules 

are responsible for computation of data, representation (e.g., how to capture continuous 

changing information such as change in water pressure due to an explosion), and 

generation of results in file or text format.  

  

d. Compression and Decompression  
Compression of the message packet to reduce its size is done here.  

Similarly, decompression is performed at the receiving end.  Some file formats are 

already in compressed form; e.g., GIF, JPEG and PNG do not require further 

compression.  Compress-able file formats include Windows bitmaps and ASCII text.  If 
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the zipped form of the file is bigger than the original file size, the original data file is used 

instead.  For this thesis, standard compression and decompression from Java are used.  

For added security, this module can be easily replaced with a cryptographic module here 

and on the receiving end. 

 

e. Base-64 Encode and Decode 
Binary to text encoding is performed in this module to handle non-textual 

data; e.g., images, audio, video and compressed data from the compression module. 

 

f. XML Parsing  
Since Jabber messages are XML-based, XML parsing and transformation 

are required.  Open-source libraries (Apache Xerces for parsing, Apache Xalan for 

transformation) are used. 

 
7. Message Generation 
The steps to process an outgoing message are given below. 

1. Loop through list of files to be sent. 
2. For each file, do the following: 

a. Create a <agent-payload> element. 
b. Add file information such as name, size and content-type into the <agent-

payload> attributes. 
c. Determine file types based on file extension (e.g., .BMP is 24-bit 

Windows bitmap and .GIF is Compuserve GIF). 
d. If the files types are GIF, JPEG, EXE, do not compress.  Otherwise, 

perform compression.  If compressed data size is greater than original, 
encode the original data instead. 

e. Check whether the file size exceeds a predefined limit. If no, proceed to 
compress and encode into CDATA section of message. 

f. If available, always add a list of hyperlinks associated to the file under the 
<url> tags. 

3. Generate XHTML message. 
4. Append to the XHTML portion of Jabber message and send it out to designated 

parties. 
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The steps to process an incoming message are given below. 

1. Loop through list of <agent-payload> elements. 
2. For each <agent-payload> element, do the following: 

a. Get file information such as name, size, content-type and content-transfer-
encoding. 

b. Check whether there is data in the CDATA section of message. 
i. If yes, check type 
ii. Otherwise, loop through the list of <url> tags and try to retrieve the 

file from one of the storage locations specified within the <url> 
tag.  At the moment, the customize client is able to fetch the file 
from a web/HTTP server and local/networked file system. 

c. Upon successful retrieval of the file contents, an “AgentPayload” object 
shall be created. 

 

<agent-payload ... 
     <url>http://server2/Cheshire Cat.svg</url> 
     <url>http://server3/Cheshire Cat.svg</url> 
     <url>ftp://www.server3.com/Cheshire Cat.svg</url> 
     <url>file://c://server3/Cheshire Cat.svg</url> 
     <url>c://server3/Cheshire Cat.svg</url> 
</agent-payload> 

Figure 101.   Links to multiple storage locations. 

 

 
Figure 102.   Processing of outgoing binary file data before it is sent out via Jabber protocol. 
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Figure 103.   Processing of incoming encoded binary data via Jabber protocol. 

 

8. Smack Library 
Smack is a library for communicating with XMPP servers to perform instant 

messaging and chat.  The library provides easy machine-to-machine communication and 

it allows the setting of any number of properties on each message, including properties 

that are Java objects.  The library was developed and maintained by Jive Software, at 

www.jivesoftware.com (accessed February 2004) and is open-source under the Apache 

Software License, which allows its incorporation into both commercial and non-

commercial applications. 

The library is extremely simple to use, yet it has a powerful set of Application 

Programming Interfaces (APIs).  Sending a text message to a user can be accomplished in 

three lines of code: 

XMPPConnection connection = new XMPPConnection("surfaris.cs.nps.navy.mil"); 
connection.login("userA", "passwordA"); 
connection.createChat("userB@xchat.movesinstitute.org").sendMessage("Hello");
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Smack provides the org.jivesoftware.smack package for the core XMPP protocol, 

and the org.jivesoftware.smackx package for many of the protocol extensions. 

 

G. BENCHMARKS 
In the benchmark tests, only the timings for packaging (i.e., compression and 

base-64 encoding) are captured. Network timings (i.e., Jabber instant messaging) are 

excluded since the results will be subjected to the network traffic and the available 

bandwidth. The ASCII plain-text data are from GEOnet Names Server (GNS) at 

http://earth-info.nima.mil/gns/html  (accessed on 15 February 2004).  The XML plain-

text data were converted from the ASCII data using the GNS class (see Appendix F).  A 

sample procedure to convert GNS plain-text data to XML format is given below. 

 

S/N Original file 
size (in bytes) 

Encoded file 
size (in 
bytes) 

Percentage 
of reduction 
(in %) 

Total time to 
compress (in 
msecs) 

Total time to 
base-64 
encode (in 
msecs) 

Total time 
taken (in 
msecs) 

1. 7326956 2380837 67.51 1219 203 1797 

2. 5754326 1845969 67.92 1094 250 1657 

3. 4378072 395021 90.98 862 440 1642 

4. 2106320 652205 69.04 344 141 563 

5. 683375 179392 73.75 78 0 156 

6. 489429 153828 68.57 63 0 78 

7. 402650 98732 75.48 47 0 125 

8. 402295 105304 73.82 47 0 63 

9. 333117 86264 74.10 110 16 141 

10. 243188 78892 67.56 31 94 172 

11. 243188 78892 67.56 31 0 63 

12. 93972 26147 72.18 16 0 16 

13. 63147 19727 68.76 0 0 0

Figure 104.   ASCII Plain-text Files achieved on average 72.09% reduction in size. 
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S/N Original file 
size (in bytes) 

Encoded file 
size (in 
bytes) 

Percentage 
of reduction 
(in %) 

Total time to 
compress (in 
msecs) 

Total time to 
base-64 
encode (in 
msecs) 

Total time 
taken (in 
msecs) 

1. 2534082 77473 96.94 240 41 701 

2. 737564 31412 95.74 80 40 330 

3. 900805 226032 74.91 300 30 591 

4. 328028 74560 77.27 90 0 100 

5. 46480 5295 88.61 0 0 10 

Figure 105.   HTML Plain-text Files achieved on average 86.69% reduction in size. 

 

S/N Original file 
size (in bytes) 

Encoded file 
size (in 
bytes) 

Percentage 
of reduction 
(in %) 

Total time to 
compress (in 
msecs) 

Total time to 
base-64 
encode (in 
msecs) 

Total time 
taken (in 
msecs) 

1 5941238 867565 85.40 516 172 797 

2 1889736 244145 87.08 125 0 203 

3 1378706 205665 85.08 78 0 156 

4 1120696 147261 86.86 63 0 141 

5 1116375 134441 87.96 62 16 156 

6 896070 118276 86.80 47 15 156 

7 649901 103836 84.02 47 0 63 

8 262508 36940 85.93 15 0 31 

9 173119 26904 84.46 15 0 15 

Figure 106.   XML Plain-text Files achieved on average 85.95% reduction in size. 

 

S/N Original file 
size (in bytes) 

Encoded file 
size (in 
bytes) 

Percentage 
of reduction 
(in %) 

Total time to 
compress (in 
msecs) 

Total time to 
base-64 
encode (in 
msecs) 

Total time 
taken (in 
msecs) 

1. 3003707 87177 97.10 270 30 590 

2. 870106 33792 96.12 80 0 330 

3. 891287 224024 74.87 310 20 541 

4. 197414 65208 66.97 50 20 80 

5. 13134 3039 76.86 0 0 20 

Figure 107.   X3D Plain-text Files achieved on average 82.38% reduction in size. 
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S/N Original file 
size (in bytes) 

Encoded file 
size (in 
bytes) 

Percentage 
of reduction 
(in %) 

Total time to 
compress (in 
msecs) 

Total time to 
base-64 
encode (in 
msecs) 

Total time 
taken (in 
msecs) 

1. 3003196 86825 97.11 261 30 591 

2. 869593 33528 96.14 80 0 330 

3. 890645 223820 74.87 300 0 550 

4. 174369 64412 63.06 60 20 80 

5. 11991 2999 74.99 0 0 20 

Figure 108.   VRML Plain-text Files achieved on average 81.23% reduction in size. 

 

S/N Original file 
size (in bytes) 

Encoded file 
size (in 
bytes) 

Percentage 
of reduction 
(in %) 

Total time to 
compress (in 
msecs) 

Total time to 
base-64 
encode (in 
msecs) 

Total time 
taken (in 
msecs) 

1. 4760390 1687945 64.54 2443   501   3335 

2. 3830190 1084981 71.67 1452   410   2163 

3. 1300052 417709  67.87 311 40 571 

4. 854570  171312  79.95 141 30 211 

5. 361041  149080  58.70 170 10 200 

6. 220866  92392  58.17 70 10 100 

Figure 109.   SVG Plain-text Files achieved on average 66.82% reduction in size. 

 

H. SUMMARY 
This chapter has proposed a solution to package text and binary data to be sent via 

Jabber instant messaging protocol.  Compression of data was done using standard Java 

classes.  The Java classes compressed both text-based (including XML-based file) and 

binary files such as images.  In general the percentage of compression achieved is 75% of 

the original file, higher for text-based files. As for Windows bitmap images, the 

compression ratio depends on the type of image that has been stored. Therefore a better 

way to ensure optimal compression is to convert the Windows bitmap images to PNG or 

JPEG format on the fly.  Of note, JPEG is lossy and may cause degradation in image 

quality.  Therefore PNG format is favored for its lossless’ nature. To achieve better 

compression ratio for XML data, XML Schema-based Binary Compression (XSBC) 

(Serin2003) can be used to complement the Java classes.  XML files are handled by 

XSBC, whereas non-XML files such as plain-text or images are handled by the proposed 
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mechanism.  Forward Error Correction can be introduced to ensure reliability of data 

transmission and receipt over noisy communication channels. 

On average, the base-64 encoding of the binary data to text data, for storage in the 

CDATA section of the Jabber XML-based message, increased the file size by 33%.  A 

better binary to text encoding scheme (e.g., using Huffman algorithm), can be pursued in 

future work.  

It is important to note that besides size, the time taken to run the compression 

process also plays an important part.  An algorithm may be good at generating a smaller 

sized file, but the time taken may be so long that it is unacceptable to the user. 

There is a physical message size limit set on the Jabber server.  This is to prevent 

overloading the Jabber server. Although the proposed mechanism introduces the use of 

hyperlinks to circumvent the potential issues, a more robust solution should be pursued; 

e.g., if the size is too big, the file is automatically posted on a web server using standard 

HTTP POST mechanism. 

 

 

 

 

 

 

 

 

 

 

 

 

 



120 

 

 

 

 

 

 

 

 

 

 

THIS PAGE INTENTIONALLY LEFT BLANK 
 
 

 



121 

V. TASK COLLABORATION USING AGENTS 

  
A. INTRODUCTION 

Multiple vehicles operating in a coordinated manner can be more effective than a 

single one. For instance, a cluster of coordinated Autonomous Underwater Vehicles 

(AUVs) can search a coastal area for mines more effectively than a single vehicle, 

however handling unanticipated events (novel or completely unexpected) is difficult, 

since they are sometimes hard to detect, much less diagnose and respond to, even for a 

single vehicle.  If the AUV is part of a cooperative or collaborative distributed multi-

agent system, the problem is compounded.  The AUV controller must now be concerned 

about what the event means for the others, the group as a whole, and their shared 

mission/goal.  Multi-agent event handling is complicated by uncertainty and lack of 

knowledge about other agents’ intentions/goals; it is exacerbated by the low bandwidth of 

communication channels available for use in the ocean. 

An agent also needs to be able to communicate with other agents to fill in the gaps 

in its models or hypotheses, to establish mutual beliefs and confirm expectations, and to 

negotiate responsibility for the different tasks during event handling. Some key 

challenges include: 

a. To determine an efficient way to deploy multiple Autonomous 

Underwater Vehicles (AUV) for collaborative work such as mine counter-measures 

missions. 

b. To determine what is the optimal number of AUVs to be used for a 

scenario (e.g., based of time of completion). 

c. To investigate amount of deviation between real-world dynamics and 

simulated ones in a virtual environment. 

d. Ability to play out more scenarios at less cost compared to live sea-trials. 

This chapter discusses the potential use and design of AUV agents. 
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Following the MAS = {Environment, Objects, Agents, Relationships, Operations, 

Laws} approach [Ferber 1999], the various components of the system are discussed in the 

following sections. 

 

B. ENVIRONMENT 
The AUVs operates in the ocean (sub-surface).  The area of operation is 

determined by the physical constraints of the AUV, as depicted below: 

a. Endurance.  The fuel tank size of the AUV is fixed.   

b. Speed.  The maximum speed of the AUV is fixed.   

c. Sensor.  

d. Communications. 

For purposes of simulation, there is a finite number of AUVs, maximum five.  

Similarly the maximum number of Communications Stations (include land, air and sea-

based) is set to five.  The need to limit the number of AUVs and Communications 

Stations is to better model the real-world environment, where it is impossible to have an 

infinite number of resources.  For the experimental runs, it is possible that zero or more 

obstacles may be placed in the environment. 

 

 
Figure 110.   Agent Boundary. 
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Figure 111.   AUV operating environment. 

 

C. OBJECTS 
List of objects and their attributes: 

1. AUV 

S/N Attribute Description 

a. ID (unique numeric value) This serves as an identifier for each AUV. The identifier is 
used to distinguish between multiple AUV agents in a 
networked environment.  It is generated programmatically 
by the AUV Workbench at runtime. 

b. Position (numerical value in meters) Indicates the location of the AUV in 3D space; i.e., X, Y 
and Z coordinates. 

c. Orientation (numeric value in 
degrees) 

Indicates the row, pitch and yaw of the AUV.  

d. Heading (numeric value in degrees) Determines which direction the AUV is heading. 

e. Speed (numeric value in knots) Speed of the AUV. 

f. Endurance Based on fuel consumption and the time it has been 
operating. 
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S/N Attribute Description 

g. Type of Sensor Type of sensor available on-board the AUV. 

h. List of Comms Stations Keep a list of communications stations. 

i. List of Obstacles Historical list of obstacles encountered. 

j. Physical Physical dimensions of the AUV, including maneuverability 
limitations, which constraint the maximum turning radius of 
the vehicle. 

k. Status A list of possible status: “Ready”, “Damaged”, “On-shore”, 
“Deployed” and “At Comms Station”. 

Table 29. AUV Attributes. 

 

2. Sensor  

S/N Attribute Description 

a. Name (string value) Description of sensor. 
b. Category (string value) Which category does the sensor belongs to; e.g., 

sonar or optical (static picture or motion video)? 
c. Range (numeric value in meters) Which category does the sensor belongs to; e.g., 

sonar? 

d. Status A list of possible status: “Ready”, “Damaged”, “On-shore”, 
“Deployed” and “At Comms Station”. 

e. Footprint (numeric value in area per 
square meters) 

What is the coverage of the sensor? 

f. Position of AUV (enumeration) Left, right, up or down.  Therefore an AUV can have 
4 sensors mounted. 

g. Readiness State (Boolean value) Up or down. 

Table 30. Sensor Attributes. 
 

3. Communications Station 

S/N Attribute Description 

a. Name (string value) Description of comms station. 

b. Category (string value) Type of station; e.g., ship-based, land, aircraft or sub-
surfaced vehicle.  Also include whether it is stationary or 
moving. 

c. Position (numerical value in meters) Indicates the location of the Comms Station in 3D space 
i.e., X, Y and Z coordinates. 

Table 31. Communications Station Attributes. 
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4. Obstacle 

S/N Attribute Description 

a. Name (string value) Description of obstacle. 

b. Category (string value) Type of obstacle (e.g., mines and marine life such as fish 
and kelp). 

c. Position (numerical value in meters) Indicates the location of the position in 3D space as 
detected by the AUV. 

Table 32. Obstacle Attributes. 

 

5. Mission Plan 
To be loaded into AUVs.  Mission plans are also used to define the initial goal of 

the AUVs. 

S/N Attribute Description 

a. Name (string value) Description of Mission Plan for identification purposes. 

b. AUV specific information. Initial position and orientation of AUV. 

c. List of waypoints Positional check-points for the AUV to be at, for a given 
time. 

d. Start/End points AUV launch position and retrieval/docking positions. 

Table 33. Mission Plan Attributes. 

 

6. Launching/Pick-up Point 
The position where the AUV is launched and picked up upon completion of goals 

or when out of fuel/time. 

 

D. AGENTS AND ACTORS 
The presence of multiple agents impact event handling in several ways. First, an 

agent may notice an event that does not directly concern it, but impacts another agent. In 

this case, the detecting agent can consider notifying the other agent about it.  Second, 

there is the possibility that multiple agents detect the same event simultaneously. If this 

happens, the agents must coordinate their event-handling activities to avoid confusion 

and counter-productive work.  Third, other agents can serve as a source of information 

(solicited or otherwise).  Some agents may be in a better position with respect to the 

knowledge they have or can easily obtain to do diagnosis or important assessment, and 

others may be better situated to carry out the responses.  At the very least, a detecting 
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agent notifies the affected agents of actions it is taking, whether in service, diagnosis, or 

in response to an event.  Figure 112 illustrates the relationships between inputs/outputs 

and the agent interior. 

 

 
Figure 112.   Agent Overview. 

 
 

Input Suite Output/Actuator Suite 

Mission Plan. Percentage of completion of Mission Plan. 

Initial position, orientation and speed. Move the AUV around the environment. 

Sensor inputs. AUV attributes. 

Inputs from Communications Stations; e.g., to 
change target priority/position. 

All attributes can be accessed via “setter” and 
“getter” methods; e.g., “getCurrentPosition()” 

Unique ID. To uniquely identify an AUV agent. 

Table 34. Agent input and actuator suite. 

 

Each AUV agent has the following attributes/states stored in the “brain” of the 

agent. The agent interior is hidden from other agents unless the information is exposed 

via the agent’s output or actuator suite.   

• Endurance.  Elapsed time is computed at the start of the experiment based 

on the amount of fuel available. 

• List of obstacles encountered.  Obstacles include mines, marine life and 

other AUVs. 

• Mission scripts of AUV commands. List of waypoints and the 

corresponding arrival/departure time at each waypoint.  To improve 
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interaction between both AUVWorkbench and other applications, the 

mission scripts/commands are defined in XML format (see sample 

Mission Script below). 

 
<?xml version="1.0" encoding="UTF-8"?> 
<AUVMissions xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="C:/AUVWorkbench/bin/scripts/missionScripts/AUVMiss
ion.xsd"> 
    <Mission> 
        <Profile/> 
        <Commands> 
            <Position course="0" depth="5" portPropSpeed="27" 
                standoff="2" starboardPropSpeed="26" thruster="on" 
                timeout="50" x="12" y="55"/> 
            <Waypoint course="180" depth="15" portPropSpeed="27" 
                standoff="" starboardPropSpeed="26" thruster="on" 
                timeout="5" x="95" y="55"/> 
            <Waypoint course="180" depth="15" portPropSpeed="27" 
                standoff="" starboardPropSpeed="26" thruster="on" 
                timeout="5" x="122" y="72"/> 
            <Waypoint course="270" depth="5" portPropSpeed="27" 
                standoff="" starboardPropSpeed="26" thruster="on" 
                timeout="5" x="68" y="64"/> 
            <Hover course="270" depth="5" portPropSpeed="27" standoff="" 
                starboardPropSpeed="26" thruster="on" timeout="5" x="12" y="70"/> 
            <Speed speed="0"/> 
            <Thruster enabled="false"/> 
        </Commands> 
    </Mission> 
</AUVMissions> 

 

S/N Element Description Measurement Unit 

1. AUVMissions Root element. - 

2. Mission There can be many “Mission” 
elements in the same Mission script. 

- 

3. Profile To be used to define area of 
interest/operations. 

- 

4 Commands List of commands to be sent to the 
AUV. 

- 

5. Position, Waypoint, 
Hover 

Positional data. - 

6. Speed Speed of both port and starboard 
thrusters. 

Revolutions per minute. 

7. Thruster Rear thrusters. Boolean. 

8. Timeout Time period to wait. In seconds 

Table 35. Mission script XML tag set. 
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The same mission plan is loaded into all the AUVs.  The course of action is 

negotiated between the AUV agents.  Each AUV is able to determine its location based 

on its heading, speed and time elapsed (with reference to the start point).  When a 

Communications Station is within the AUV’s transmission range, the agent polls the 

station for its position.  Using the coordinates returned by the Communications Station 

and distance between the Communications Station and AUV, the agent tries to check 

whether its internally computed position is correct.  Here is how the goals are defined: 

S/N Goal Description/ 
Measurement Method 

Course of Action 

1. Movement from 
point-to-point  

Moving to a specified 
position (defined in the 
Mission Plan) within 
stipulated time (with a user-
definable tolerance; e.g., 15 
minutes). 

Update “WAYPOINT REACHED” 
status in Mission Plan. 
 
It tries to update the Comms Station 
or any AUV within its vicinity. 
 

2. Movement 
within Area of 
Interest 

Move into a predefined 
region of operations. 

- 

3. Movement by 
following a 
leader 

2 possible scenarios: 
• Right from the start, 
follow a pre-determined 
leader. 
• Upon receipt of 
indication that a detection 
has occurred. 

- 

4. Object/Obstacle 
Detection 

Based on sensor input, the 
agent is able to know the 
general location of the 
obstacle and whether it is 
moving or stationary. 
 
It is possible for an obstacle 
to be larger than the sensor’s 
field of view. 

Slow down and try to identify the 
obstacle (a mine, another AUV or 
fish?). 
 
If there is a high probability that it is a 
mine, it tries to get another AUV to 
double-check.  And at the same time, 
it tries to inform the Comms Station. 
 

5. Object/Obstacle 
Identification 

Detection is normally 
followed by identification and 
confirmation of target 
objects. 

- 

6. Collision Occurs when the AUV is 
caught “off-guard” due to 
limited sensing capability 
(note: the sensors on-board 
do not allow the AUV to have 
full sensing of its neighboring 
environment). 

Locate other AUVs that are close-by. 
Locate Comms Stations that are 
close-by.  Surface and/or dock if 
necessary. 
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S/N Goal Description/ 
Measurement Method 

Course of Action 

7. Position Update When it is within range of 
another AUV or Comms 
Station, it checks whether 
the position it has computed 
is correct. 

If position is wrong (outside a 
Tolerable limit; e.g., 25m), it makes 
adjustment and tries to move to the 
desired position.   
 
Once at the correct position or along 
the way, it checks whether the list of 
waypoints it had supposedly 
completed is correct (within a 
tolerable limit; e.g., 25m). 

8. Endurance Based on the time remaining, 
it extrapolates whether there 
is enough time to complete 
its task. 

Speed up or slow down so that all its 
targets/waypoints can be achieved. 
 
 

9. Communications Transmission of data back to 
comms stations. 

- 

Table 36. Agent goal definition. 

For each of the goals defined, there is a priority (similar to “traffic-light” system) 

assigned to them.  The priority shall have three states – low, medium and high. 

 

E. RELATIONSHIPS 
1. Define initial goals and update status as required (Mission Plan ↔ AUV). 

2. Encounter or detect an obstacle (Obstacle  AUV). 

3. Sensor Input (Sensor    AUV). 

4. Transmit findings to Communications Stations or receive positional 

data/new orders (Communication Stations ↔ AUV). 

 

F. PROCESSES AND OPERATIONS 
1. Follow waypoints defined in Mission Plan. 

2. Compute its position internally based on its speed and elapsed time. 

3. Update “waypoint reached” status upon arriving or bypassing a waypoint. 

4. Upon obstacle detection or encounter, look for closest AUV agent and/or 

Communications Stations to share information. 



130 

5. When within range of another AUVs, share the following information; 1) 

own percentage of Mission Plan completion; 2) own position. 

6 When within range of Communications Station, the AUV checks whether 

its own computed position is correct by referencing the Communications Station’s 

position (pre-loaded into AUV).  If not, perform compensatory action.  In addition, it 

checks whether the list of waypoints that it thought it passed is correct. 

 

G. SUMMARY OF LAWS 
1. Communications between AUV-AUV and AUV-Communication Stations 

are possible only when within range. This is a “Many-to-Many” relationship. 

2. Communications shall be initiated by the AUV or Communications 

Stations. 

3. Communications Stations are manned or remotely operated by humans.  

Therefore their locations are always precise since additional equipment is available to 

geo-reference them (GPS-enabled).  All Communications Stations’ coordinates are pre-

loaded or made known to AUV agents. 

4. To simplify the system, there are two types of sensors, namely sonar and 

optics.  Both types of sensors shall operate ideally with the given range and coverage.  In 

the real-world, these sensors rarely operate to their optimal performance due to oceanic 

conditions. 

5. The launching point and the retrieval point of the AUV may differ. 

6 The team of vehicles is moving in an environment of known dimensions, 

searching for target of interest.  The vehicles are assumed to be equipped with: 1) target 

sensing capabilities for obtaining a limited view of the environment; 2) wireless 

communication capabilities for exchanging information and cooperating with one 

another; and 3) computing capabilities for processing the incoming sensor data and 

making dynamic guidance decisions. 

7. For each AUV agent, there is only one Mission Plan. 
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8. Fuel consumption by the AUV is constant; therefore the AUV is able to 

operate for a fixed time period; e.g., 3 hours. 

9. The agents are equipped with sensors to view a limited region of the 

environment they are visiting, and are able to communicate with one another to enable 

cooperation.  The agents are assumed to have some “physical” limitations including 

maneuverability limitations, fuel/time constraints and sensor range and accuracy. 

 

H. AGENT IMPLEMENTATION 

1. Concept of Connector-Ticket Pair 
Packaging and Tagging of Raw Inputs.  Raw inputs from sensors (e.g., sonar or 

video feed) are first packaged. Packaging involves formatting the data into an agent-

readable form (e.g., following a particular XML schema or template).  This is followed 

by tagging. The tagging process is to add connectors and/or tickets to the packaged data.  

The connector-ticket pairs allow the data to interact with the agent’s set of connector-

ticket pair of goals.  Finally the tagged data is passed into agent’s space for interaction. 

Integration networks (IN) are formed as related (in terms of time and event) tagged data 

is grouped together.  In addition, if double-scope blending takes place, new generic 

spaces can be created [Turner 2002].  With the creation of new generic spaces, the agent 

is in fact shaping its perception of the environment. 

 
Figure 113.   Connector-Ticket - Packaging and Tagging. 

Matching tagged data.  At the end of each tagged data, there are either one or 

many connectors that match the ones that are extended from the agent’s goals (See Figure 

108).  Tagged data and connectors form a ticket. When there is a match, the agent may 

choose to retract the fulfilled goal or trigger a new set of goals.  At the moment, these 

actions are defined as a template within the agent. With better understanding of the 
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conceptual blending principles, it may be possible to get the agent to formulate new goals 

that will aid in its fulfillment of goals/functions. 

Below is a possible scenario on how goals can be altered based on the agent’s 

perception of the environment and its interaction with other agents through the use of 

connectors and tickets.  

At the start of the run, agents are given basic goals; e.g., “Move along a 

predefined path or an area of interest within a given time”.  If the AUV sensors detect an 

object, the basic goals are either upgraded or replaced (i.e., retracted) by more complex 

ones.  The complex goals may vary from getting another AUV to perform identification 

or confirmation of contact, or to track the object/obstacle for a predefined time period, or 

surface and transmit data back to communications stations. 

 
Figure 114.   Connector-Ticket Matching. 

 

I. AGENT-TO-AGENT COMMUNICATIONS 

1. Agent Identifier 
The system makes use of the chat/Jabber ID (e.g., 

XTCServlet@xchat.MovesInstitute.org) to distinguish between multiple agents across a 

list of networked AUV Workbench applications. 

For each workbench, there is one agent identifier. The user is able to change the 

agent’s identifier from within the workbench.  Note: the workbench must have 

connectivity to a chat/Jabber server. 
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2. Communications 
Extensible Messaging and Presence Protocol (XMPP) is used as the means for 

communications between agents. The techniques for packaging and transporting agent 

messages via XMPP are the same as those discussed in Chapter IV.  

 
Figure 115.   Agent-to-agent communications using XMPP. 

 

 
Figure 116.   Human and Agent interaction via Jabber chat room. 

 

3. Strategy for Data Collection 

• Compute number of AUVs and Communications Stations available. 

• Compute the percentage of completion of Mission Plan. 

• Keep track of obstacles encountered (mines and AUVs). 
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4. Data Analysis 

a. Initialization Phase 
The system randomly assigns a unique ID for each of the AUV agent.  The 

mission plan is loaded into the AUVs together with start and end locations, and 

Communications Station locations. 

Once the Mission Plan has been loaded, the agent computes the feasibility 

of completing the plan, within the required time allowed (or fuel constraint).  If not, it 

informs the user to make changes to the Mission Plan.  If the plan is feasible, the agent 

generates an internal “Search Map”.  Unvisited waypoints (in RED, Figure 117) are 

marked. Similarly for Start/End points (in GRAY, see Figure 117) and the locations of 

Communications Stations (in CYAN, see Figure 117). 

b. Start/During the Run (AUV Execution) 

• When a waypoint is reached, it is marked (in GREEN, Figure 117).  

The time is recorded and compare against the time specified in the 

Mission Plan.  A tolerance of 5-10 minutes is allowed.  If the time 

discrepancy is too great, the agent tries to compensate by 

increasing speed to the next waypoints. 

• When the agent senses an obstacle, it slows down and tries to 

identify what it is (e.g., by shape and size).  To identify the 

obstacle, it instructs the vehicle to move around the obstacle to 

gather more data.  If a particular type of obstacle (e.g., mine) has 

been found, it tries to inform the Communications Stations and 

other AUVs.  And if neither an AUV nor Communications Station 

is within its vicinity, it proceeds to the closest Communications 

Stations and/or moves towards a previously known AUV's 

direction.  The obstacle is marked in the agent’s internal “Search 

Map”.  Additional information on the obstacle such as size, 

moving/stationary and type are also captured in the corresponding 

grid square in the “Search Map”. 
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• When in contact with another AUV or within the transmission 

range of Communications Station, it shares its position, orientation, 

heading and speed with it.  Similarly the other AUV shares the 

same attributes. 

 
c. Possible Strategies 

• Follow the path where there is minimum overlap with other agents. 

Since the agents are able to share their new information about the 

search region, it is natural that they may select the same search 

path as other agents (especially since in general they will be 

utilizing the same search algorithm). This will be more pronounced 

if two agents happen to be close to each other. However, in order 

to minimize the global uncertainty associated with the emergent 

knowledge of all agents, it is crucial that there is minimum overlap 

in their search efforts. This can be achieved by including a cost 

function component that penalizes agents being close to each other 

and heading in the same direction. This component of the cost 

function can be derived based on the relative locations and heading 

direction (angle) between pairs of agents. [Polycarpou 2001] 

• Follow the path that maximizes coverage of the highest priority 

targets.  In mission applications where the agents have a target 

search map with priorities assigned to detected targets, it is 

possible to combine the search of new targets with coverage of 

discovered targets by including a cost component that steers the 

agent towards covering high priority targets. The cost component 

is based on the target’s characteristics such as shape, size, mobility 

and its overall effect on the mission (e.g. mines have a higher 

priority). This leads to a coordinated search where both coverage 

and priorities are objectives. 

• Follow the path toward highest priority targets with most 

certainty. In some applications, the energy of the agent is limited. 
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In such cases it is important to monitor the remaining fuel and 

possibly switch goals if the fuel becomes too low. For example, in 

search-and-engage operations, the agent may decide to abort 

search objectives and head towards engaging high priority targets 

if the remaining fuel is low.  Environment factors such as sea state 

will also affect the operational effectiveness of the AUV sensors as 

well as its maneuverability. 

• Follow the path toward targets where there will be minimum 

overlap with other agents. Cooperation between agents is a key 

issue not only in search patterns but also in engagement patterns. If 

an agent decides to engage a known target, there needs to be some 

cooperation such that no other agent tries to go after the same 

target; i.e., a cooperative engagement strategy is utilized.  On the 

other hand, this strategy will depend on the availability of the 

weapon systems onboard the AUV.  Multiple attacks will increase 

the cumulative probability of kill, but this has to be weighted 

against the probability of not having resources to search for other 

targets or even to react in time to another target once the AUVs are 

on-route to the first known target.  At the same time, there is also a 

probability of losing the first target and reacquisition will be 

required before engagement can commence. 
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Figure 117.   AUV Agent - Search Map. 

 

J. SUMMARY 

This chapter discusses the design of the AUV agent attributes and possible 

strategies to define the agents’ goals.  Means of communications between agents using 

Jabber instant messaging were presented.  An example application to construct a search 

map is described. 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

A. INTRODUCTION 
The main purpose of this work was to design and implement a common platform 

for AUV mission planning and analysis.  The end product is the AUV Workbench. Using 

Java-based open-source libraries for functionality, Extensible Markup Language (XML) 

for data storage and exchange, and a component-based framework, the AUV Workbench 

provides an intuitive cross-platform-capable tool with extensibility to provide for future 

enhancements such as agent-based control, asynchronous reporting and communication, 

and loss-free message compression. 

In addition, this thesis has explained the suitability of Jabber instant messaging 

for text and file messaging in a tactical environment.  Exemplars have shown that the 

XML backbone of this open-standards technology can be leveraged to enable both human 

and agent messaging, providing powerful improvements over current systems. 

 

B. RECOMMENDED FUTURE WORK 

1. Overview 
This thesis established the foundation for future work for modeling and 

simulation of AUVs. This work has demonstrated that the AUV Workbench provides a 

test-bed for emergent AUV technologies and can assist in the development of traditional 

and agent-based methodologies.  Additionally, the flexible design of the Workbench 

facilitates potential extensions to serve operational needs.  A list of recommendations is 

given in this section. 

 

 



140 

 
Figure 118.   Modular overview of future work. 

 

2. AUV Multi-Agent System Framework 
Most AUV missions neither require nor permit constant human oversight. 

Operating conditions, adverse environmental conditions or inherent limitations of 

underwater communications paths can cut off communications with the vehicles.  For 

example, a covert surveillance or reconnaissance mission precludes all but the most 

minimal communication with the vehicle.  Therefore if a virtual AUV agent is able to 

simulate the real AUV in water, it is able to provide human operators with a visual or 

audible cue on its whereabouts.  When the real AUV surfaces, the virtual AUV 

synchronizes its position and status (e.g., sensor data or equipment failure).  While the 

actual AUV is in water, the human operator may re-task the AUV using AUV agent, with 

the re-tasked orders transmitted to the actual AUV.   

Ideally, AUVs are capable of acting truly autonomously for long periods of time 

in challenging, unpredictable environments.  As the missions undertaken by the AUV 

become more complex, it becomes difficult for the human to keep up, making agents 

potentially useful.  A set of rules is given to the agents. The human operator intervenes 

when there is a conflict or when a critical condition arises (i.e., system failure or mine 

detection).   
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Just as the XML-based mission script provides low-level commands to the AUV, 

the same mission script can be extended to define goals in an agent system.  This is 

similar to strategic level commands. (Duane 1996)  The agents can be developed using 

Connector-based MultiAgent System (CMAS) library. (Hiles2004)   

AUV reactions are based on its onboard suite of sensors (e.g., when a mine is 

encountered, loiter to verify, or surface to report).    Picture the following: an AUV is in 

water, a human controller on ship or shore running the AUV Workbench, introduces 

(drag-and-drop) a virtual obstacle into the virtual environment; a daemon agent pushes 

this piece of information out to the real AUV’s sensors to “simulate” the detection of an 

obstacle; the AUV in water reacts accordingly.   

Instead of having cardboard enemies, we have a more realistic agent that models 

the enemy.  This would help blur the line between simulation and real world operations 

and give a “practical” use of simulations.  Of note, there are still issues such as bandwidth 

and latency with AUV communications that needs to be solved.  Bolder AUV 

deployment concepts can be tried out; e.g., perform dynamic re-tasking once the AUV is 

in the water.  The agent system provides data to support or confute.  At the same time, the 

system provides details on what is the “cost” involved (in terms of potential loss of target 

and its endurance) when an AUV is directed to another supposedly higher priority target. 

 

3. Development of Collaborative Sensing Strategy Using Dissimilar 
AUVs 

The current robot execution module is based on the NPS ARIES AUV.  This 

software can be replaced by another AUV from an industry partner or academic 

institution.  Once implemented, NPS will have a wide variety of AUVs to try out 

different scenarios with dissimilar AUVs, instead of just the NPS-specific vehicles.  

Picture a tactical scenario whereby a planner defines the area of operations, its conditions 

and constraints.  From a library of AUV models (which includes the virtual 3D 

representation and the robot software), the system comes out with a list of 

recommendations.  The list may comprise dissimilar AUVs. The most important point is 

not who’s AUV is better, but how can the mission best be accomplished.   
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The posting of the AUV Workbench application online as open source with 

executeable binaries makes this vision more realizable, now that developers and partners 

from other research institutions or industry, can download the application and work on it. 

 
4. Simulation of Targets/Obstacles 
The topic of AUV obstacle avoidance is a well-researched area.  The challenge is 

to develop an obstacle avoidance agent that runs alongside the Workbench.  At the same 

time, it is necessary to develop an obstacle generation or simulation module.  The 

obstacle-simulation module dynamically introduces obstacles such as marine life or 

mines into the virtual environment.  At the moment, under the Event Monitoring module, 

obstacles are displayed as targets.  These targets contain only static information and are 

not “live”.  This will cause issues when multiple sightings of the same target (e.g., mine) 

are reported.  These will be plotted multiple times in the Workbench.  A better approach 

is to make “live” targets, i.e., link them to a centralized agent that is responsible for the 

tracking and aggregation of data pertaining to targets.  There can be an agent for each 

type of obstacles or targets, one for mines and another for ships.  A target representation 

language using XML can be defined. A mine target may look like the one below: 

<?xml version="1.0" encoding="utf-8"?> 
<Target category="mine" type="subsurface"  
        classification="unknown" reportedBy="AUV1" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:noNamespaceSchemaLocation="C:\auv\Workbench\Targets\auvTargetLangu
age.xsd"> 
 <Report dateTime="20040101103000"> 
  <Position x="100" y="100" depth="15"/> 
  <Size length="1" breadth="1" height="1"/> 
 </Report> 
 <Report dateTime="20040101104500"> 
  <Position x="100" y="103" depth="13"/> 
  <Size length="1" breadth="1" height="1"/> 
 </Report> 
 <Report dateTime="20040101104500"> 
  <Position x="100" y="103" depth="13"/> 
  <Size length="1" breadth="1" height="1"/> 
 </Report> 
     <Details desc="More details here"> 
  <Url>http://tacticalsvr/sightingMine.htm</Url> 
  <Url>http://tacticalsvr/video.jpg</Url> 
     </Details> 
</Target> 

Figure 119.   Proposed XML-based representation of Mine Target. 
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5. Simulation of Environmental Conditions 
The real world conditions are more dynamic and unpredictable.  An environment 

agent is responsible to feed environmental data such as sea-state and ocean current to the 

Workbench.  To lend more realism to the virtual environment, a web service that 

subscribes to real weather data can be developed.  A potential sub-module is to simulate 

interference and unreliability in communications due to weather conditions. 

 

6. Plug-in Framework 
To facilitate further development and use of the Workbench, an important 

addition is to have a robust component plug-in framework.  This framework would 

consist of a plug-in manager that allows the user to add, remove or configure plug-in 

modules.  This approach is more flexible and robust compared to compiling everything 

into the Workbench, which may or may not get used.  The set of rules and configurations 

are defined in an XML schema.  A sample representation is given below: 

<?xml version="1.0" encoding="utf-8"?> 
<Class name="Plugin" returnType="String"> 
 <Method name="display" returnType="void"> 
  <Parameter type="int" default=""/> 
  <Parameter type="String" default="Description"/> 
 </Method> 
 <Argument value="mine.xml"/> 
 <Argument value="mine.gif"/> 
</Class> 

Figure 120.   XML-based representation of Plug-in Class 

One approach to develop the plug-ins framework is the use of Java Reflections 

whereby introspection of classes (plug-in module) can be performed at runtime.  

Reflection enables Java code to discover information about the fields, methods and 

constructors of loaded classes, and to use reflected fields, methods, and constructors to 

operate on their underlying counterparts on objects, within security restrictions.  This is 

an advanced topic in Java programming.  Another possible approach is to use Jabber 

instant messaging for the communications between the plug-in modules and the 

Workbench application.  Again, the messages are defined in an XML schema.  The 

Jabber instant messaging solution developed in this thesis will be useful as it handles data 

as well as binary files. 
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7. AUV Mission Manager 
An AUV Mission Manager should be introduced to handle the definition and 

execution of multiple AUV mission plans.  The Mission Manager is responsible for the 

invocation and message passing between the various AUVs in the 3D display and agent 

environment.  

A good approach to implementing the Mission Manager is to have decentralized 

“Execution” and “Dynamics” processes.  These processes might be written as web 

services or agents using the Jabber protocol for data and file message exchange. 

 

8. User Interface Enhancements 

a. Manipulate Multiple Missions in 2D Mission Planner 
At the moment, the underlying software architecture supports multiple 

missions, but the 2D Mission Planner graphics display does not.  A mission layer 

manager has to be added to facilitate an intuitive way for manipulating multiple missions.  

At the same time, it must support the ability to tie the mission scripts to specific virtual 

AUVs via DIS application, site and entity ID fields.  A possible representation of the 

mission layer manager is given in Figure 121.  The “eye” icon allows the user to show or 

hide the mission on the display. 

 
Figure 121.   Mission Layer Manager in 2D Mission Planner module. 

 

b. Animated Icons in 2D Mission Planner and Mission Command 
List 

To promote a more intuitive user interface, animated icons can be 

introduced to depict the status of a command; e.g., when the propeller is turned on, it is 

animated.  This gives a user a better appreciation of the current status of the mission 

Show or hide 
mission 

Current active 
mission 

Locked mission to 
prevent editing  
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commands.  Similarly, the concept can be used in the 2D Mission Planner to depict 

important targets with a glowing red boundary.  The concept of target decay (i.e., 

freshness of data) can be introduced using colors too; e.g., a new target has a solid color 

and as time passes, it becomes grayed out. 

 

9. Distributed Robot (Execution) and Virtual Environment (Dynamics) 
Processes 

At the moment, “Execution” and “Dynamics” processes are running on the same 

machine and Java Virtual Machine (JVM).  The two processes use DIS multicast packets 

to talk to each other.  In principle, both these processes are already network-capable. If 

both the processes are shifted to a server, it is possible to achieve a performance gain as it 

will offload the JVM. One approach is to implement the robot execution and virtual 

environment hydrodynamics using web services.  The Workbench can toggle between 

running them on a server or local.  Another approach is to use Jabber instant messaging.  

The AUV Workbench will package the active mission script using the method discussed 

in this thesis.  The packaged mission script is then posted in a pre-defined chat-room.  

The “Execution” and “Dynamics” processes are Jabber-enabled so that they will pick up 

the packaged mission script and execute it. 

With the server setup, the Execution and Dynamics processes are consolidated at 

a central location.  This aids in development and testing. 

The same server that functions as a Jabber server (for agent-to-agent 

communications through chat protocol) can also be configured as a web server 

(specifically Apache Tomcat). 

 

10. Compression and Error-Correction Algorithms 
Data compression is important in the operation of AUVs.  Water density inhibits 

transmission of radio and light waves.  Although sound travels quite well, currently 

achievable data transmission rates are poor in comparison to land-based communications. 
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A likely candidate for data compression is an in-house developed compression 

scheme, Cross Format Schema Protocol (XFSP) [Serin 2003] or XML Schema-based 

Binary Compression (XSBC).  XSBC is schema-based XML binary serialization and 

compression. 

In addition to compression, data error correction and recovery schemes can be 

introduced as acoustic shallow-water data transmissions are known to be unreliable and 

an autonomous entity will often experience problems when passing a message to its 

intended receiver.  According to thesis work performed in 1995, Forward Error 

Correction (FEC) can reduce the number of required retransmissions by 3 to 15 percent. 

FEC is a “method of data encoding that gives the receiver the ability to correct data 

received in error up to a preset bound.”  FEC can be easily implemented, the most basic 

implementation requiring the use of a simple Hamming code. [Reimers 1995] As with the 

implementation of an XML-based mission control language, one goal of FEC is 

standardization of the underwater acoustic data communications community (after 

Reimers, 1995).   

The study and introduction of encryption and decryption algorithms is important 

as AUVs are tasked to perform covert missions. 

 

11. Mapping Capability in Mission Planner 
The current version of the mission planner does not have any mapping capability.  

There are several commercial and Open Source products available to add mapping and 

geo-referencing capability to the Workbench.  OpenMap is an Open Source Java Beans 

based toolkit for building applications and applets needing geographic information. Using 

OpenMap components, you can access data from legacy applications, in-place, in a 

distributed setting. At its core, OpenMap is a set of Swing components that understand 

geographic coordinates. The technology base underlying OpenMap was developed under 

government funding. From 1987 - 1992, BBN was involved in a DARPA collaborative 

mapping research project http://openmap.bbn.com/ (Accessed February 2004).  Another 

open-source product is GeoTools. GeoTools is an open source Java toolkit for developing 

interactive geographical maps. The emphasis is on client side mapping applets that 
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require little or no server side support. The main file format for the moment is the ESRI 

Shapefile (.shp).  http://geotools.sourceforge.net/ (Accessed February 2004).  There are 

two commercial solutions identified.  They are iLog Jviews and ESRI Java MapObjects. 

ILOG JViews Maps Package provides a full range of features, including geo-referencing 

for easy placement of assets in proper locations, mix-and-match vector and raster data in 

the same map and the ability to handle multiple projections of the earth's surface   It has 

built in load-on-demand for efficiently handling large sets of map data www.ilog.com 

(Accessed February 2004).  An important feature as the Workbench acquires Geographic 

Information Systems (GIS) capability. ESRI Java MapObjects is a powerful collection of 

pure Java components that allows developers to build custom, cross platform, mapping 

and spatially enabled applications. With a robust collection of pure Java GIS and 

mapping components, including a suite of pre-defined visual JavaBeans, MapObjects—

Java Edition provides developers with the tools to create client or server-side applications 

for stand-alone deployments or delivery over the Web www.esri.com (Accessed February 

2004).   A list of open-source and free GIS related software projects are available on 

http://opensourcegis.org/ (Accessed February 2004). 

 

C. SUMMARY 
Conclusion and future work recommendations are collected in this chapter.  The 

goal of implementing a common platform for AUV mission planning and analysis has 

been achieved.  At the same time, this thesis has shown that Jabber, an open-standards 

technology for instant messaging, is a viable solution to facilitate text and file messaging 

for humans as well as agent communications.  Exemplars have demonstrated how in-

mission and post-mission event monitoring by human operators can be achieved via 

simple web page, standard clients, or custom instant messaging client.  Finally, the AUV 

Workbench is a potential tool for the development of multiple-AUV deployment 

concepts, tactics and doctrine. 
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APPENDIX A. ACRONYMS AND ABBREVIATIONS 

Acronym / Notation Definition 
2D 2 Dimensional 
3D 3 Dimensional 
API Application Programming Interface 
ARIES Acoustic Radio Interactive Exploratory Server – NPS AUV 
AUV Autonomous Underwater Vehicle 
DTD Document Type Definition – XML 
M&S Modeling and Simulation  
NPS Naval Postgraduate School 
REMUS Remote Environmental Measurement UnitS 
RF Radio Frequency 
URI Uniform Resource Identifiers 
URL Uniform Resource Locator 
URN Uniform Resource Names 
UUV Unmanned Underwater Vehicle 
X3D Extensible 3D Graphics 
XML Extensible Markup Language 
XMPP Extensible Messaging and Presence Protocol 
XMSF Extensible Modeling and Simulation Framework 
XSD XML Schema Definition 
XSL Extensible Style Language 
XSLT Extensible Style Language Transformation 
XTC XML-based Tactical Chat 

Table 37. Acronyms and abbreviations 
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APPENDIX B. LIST OF ARIES AUV-SPECIFIC EXECUTION-
LEVEL COMMANDS  

A. INTRODUCTION 
This appendix consists of the list of ARIES AUV-specific execution level 

commands along with attribute types and example values.  This language remains under 

developed; particularly with respect to in-water exception handling. 

B. XML-BASED EXECUTION LEVEL COMMANDS 

1. <Depth> Element 

<Depth> sets commanded vehicle depth. Sample given below: 

<Depth value="10"/> 

 

S/N Command Description Format/Type Default  Required 

1. value Depth value Decimal 0.0 N 

 

2. <EnterTube> Element 

<EnterTube> commands the vehicle to enter a specified recovery tube. Vehicle 

initial position needs to be directly in front of opening, but heading can be off.  Sample 

given below: 

<EnterTube recoveryRange="5" recoveryHeading="270"/> 

 

S/N Command Description Type Default  Required 

1. recoveryRange Range from vehicle's current location to 
final recovery position. 

Decimal - Y 

2. recoveryHeading Recovery heading (must match 
orientation of the tube). 

 - Y 

3. timeout Specifies a max allowable time for the 
command (negative means no limit) 
before failure. 

Decimal -1.0 N 
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3. <FollowLight> Element 

<FollowLight> commands the vehicle to follow a light source to a recovery 

location.  Sample given below: 

<FollowLight/> 

 

S/N Command Description Type Default  Required 

1. timeout Specifies a max allowable time for the command 
(negative means no limit) before failure. 

Decimal -1.0 N 

 

4. <GpsFix> Element 

<GpsFix> orders the vehicle to surface for a GPS fix or resume mission after a 

obtaining a GPS fix.  Sample given below: 

<GpsFix status=”complete” timeOut=”5.0”/> 

 

S/N Command Description Format/Type Default  Required 

1. status Operational status of 
GPS unit. 

GpsFixStatus = {“start”, 
“inProgress”, “complete”, “failed”} 
 
Enumerated list of possible GPS 
fix statuses. 

start N 

2. timeout Specifies a max 
allowable time for the 
command (negative 
means no limit) 
before failure. 

Decimal -1.0 N 

 

5. <Heading> Element 

<Heading> sets commanded vehicle heading (disables waypoint or recovery 

control). Sample given below: 

<Heading value="270"/> 

 

S/N Command Description Format/Type Default  Required 

1. value Course heading. Decimal 0.0 N 
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6. <Help> Element 

<Help> causes a list of valid commands to be printed to the console (if 

available). Sample given below: 

<Help/> 

 

7. <Hover> Element 

<Hover> commands the vehicle maintain position at a specified (x,y) position.  

It can include heading and depth command.  Sample given below: 

<Hover x="200" y="100" z="15" heading="270" standoff="2.5"/> 

 

S/N Attribute Description Format Default Required 

1. x x-coordinate. decimal - N 

2. y y-coordinate. decimal - N 

3. z z-coordinate. decimal - N 

4. heading Course heading. decimal - N 

5. standoff Stand-off distance. decimal - N 

6. altitudeControl Determines whether z is depth or height 
above the bottom. 

boolean false N 

7. timeout timeOut attribute specifies a max allowable 
time for the command (negative means no 
limit) before failure. 

decimal -1.0 N 

 

8. <Lateral> Element 

<Lateral> sets both lateral thrusters to cause vehicle to slide right or left 

(turns off all automatic control modes). Sample given below: 

<Lateral speed="10"/> 

 

S/N Command Description Format/Type Default  Required 

1. speed Speed of thrusters. Decimal 0.0 N 
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9. <MissionScript> Element 

<MissionScript> loads a new mission script from a specified file. Sample 

given below: 

<MissionScript fileName="sample.xml"/> 

 

S/N Command Description Format/Type Default  Required 

1. path Directory or full path information. String  N 

2. filename File name. String  Y 

 

10. <Pause> Element 

<Pause> temporarily suspends vehicle operation (for bench test or virtual world 

use only), useful for getting evaluation checkpoints during testing. Sample given below: 

<Pause/> 

 

11. <Planes > Element 

<Planes> sets bow and/or stern plane deflection angle (turns off all automatic 

control modes). Sample given below: 

<Planes which="stern" value="-25"/> 

 

S/N Command Description Format/Type Default  Required 

1. which Set planes AvailablePlanes = {“bow”, “stern”, 
“both”} 
 
Enumerated list of manually 
settable control planes. 
 

both N 

2. value Angle of deflection. Decimal 0.0 N 

 

12. <Position> Element 

<Position> updates of vehicle position in the world (new navigation fix has 

been obtained). It sets GPS zero point if not previously done.  Sample given below: 

<Position x="12" y="55" depth="5"/> 
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S/N Attribute Description Format Default Required 

1. x x-coordinate. decimal - Y 

2. y y-coordinate. decimal - Y 

3. depth Depth data. decimal - N 

 

13. <Propeller> Element 

<Propeller> manually set one or both propeller speeds.  Sample given below: 

<Propeller which=”port” rpm=”10”/> 

 

S/N Command Description Format/Type Default  Required 

1. which Location. AvailablePropellers = {“port”, 
“starboard”, “center”, “both”} 
 
Enumerated list of manually 
settable propellers. 

both N 

2. Rpm Speed. Decimal - Y 

 

14. <Quit> Element 

<Quit> ends the vehicle mission after zeroing all control settings (does not 

initiate surfacing procedure). Sample given below: 

<Quit/> 

 

S/N Command Description Format/Type Default  Required 

1. mode  ExitModes  = {“normal”, 
“missionAbort”, “systemAbort”, 
“recallAbort” } 
Enumerated list of possible 
mission ending modes. 

- N 

  
15. <RealTime> Element 

<RealTime> causes execution to run in realtime (or turns realtime execution 

off). Sample given below: 

<RealTime/> 
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S/N Command Description Format/Type Default  Required 

1. set Turn on or off. Boolean true N 

 

16. <ResetTime> Element 

<ResetTime> resets the vehicle clock time to a specified value. Sample given 

below: 

<ResetTime value="1.0"/> 

 

S/N Command Description Format/Type Default  Required 

1. Value  Decimal 0.0 N 

 

17. <Rotate> Element 

<Rotate> sets both lateral thrusters to cause vehicle to rotate (turns off all 

automatic control modes). Sample given below: 

<Rotate speed="-10"/> 

 

S/N Command Description Format/Type Default  Required 

1. speed Speed of thrusters. Decimal 0.0 N 

 

18. <Rudder> Element 

<Rudder> sets rudder deflection (turns off all automatic control modes).  

Sample given below: 

<Rudder value=”0.5”/> 

 

S/N Command Description Format/Type Default  Required 

1. value Angle of deflection. Decimal 0.0 N 
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19. <Sonar> Element 

<Sonar> commands the vehicle to assume a specified fixed station relative to a 

sonar target.  Sample given below: 

<Sonar sonarHardware="ST1000" scanMode="manual" bearing="180" 
bearingType="relative"/> 

 

S/N Command Description Type Default  Required 

1. sonarHardware Sonar models that may be 
installed. 

SonarHardwareModels = 
{“ST1000”, “ST725”}; 
 

st725 N 

2. Mode Sonar scan modes. SonarScanModes= 
{“scan”, “track”, 
“trackWhileScan”, 
“manual”} 
 

scan 
 

N 

3. bearing Direction. decimal 0.0 N 

4. bearingType Angles measured from 
bow/north clockwise when 
viewed from above. 
Matches a standard 
compass rose. 

BearingTypes= 
{“relative”, “true”, 
“magnetic”} 
 
 
 

relative N 

 

20. <Standoff> Element 

<Standoff> resets the acceptable standoff radius in meters around hover-points 

and waypoints. Sample given below: 

<Standoff range=”15.0”/> 

 

S/N Command Description Format/Type Default  Required 

1. Range Stand-off distance. Decimal 2.5 N 
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21. <TakeStation> Element 

<TakeStation> commands the vehicle to assume a specified fixed station 

relative to a sonar target. Sample given below: 

 
<TakeStation sonarScanMode="target" targetRange="5" 
targetBearing="90" commandRange="5" commandBearing="45" 
heading="270"/> 

 

S/N Command Description Type Default  Required 

1. sonarScanMode Determines whether the 
vehicle will maintain station 
by sonar scanning the 
entire target or just the 
edge. 

TargetTrackModes = 
{“targetEdge”, “target”} 
 
Enumerated list of 
sonar target tracking 
modes. 

targetEdge N 

2. targetRange Approximate range to 
target to enable sonar to 
initially acquire (not 
required if vehicle is 
already tracking). 

Decimal - N 

3. targetBearing Approximate bearing of 
target to enable sonar to 
initially acquire (not 
required if vehicle is 
already tracking). 

Decimal - N 

4. commandRange Commanded range to for 
vehicle to remain from the 
target. 

Decimal - Y 

5. commandBearing Commanded bearing to the 
target for the vehicle to 
maintain. 

Decimal - Y 

6. heading Course heading. Decimal - N 

7. timeout Specifies a max allowable 
time for the command 
(negative means no limit) 
before failure. 

Decimal -1.0 N 
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22. <Thrusters> Element 

<Thrusters> enables or disables the vehicle's vertical and lateral thrusters (can 

be overridden by some control commands).  Sample given below: 

<Thrusters on=”true”/> 

 

S/N Command Description Format/Type Default  Required 

1. On Specifies a max allowable 
time for the command 
(negative means no limit) 
before failure. 

Boolean true N 

2. which Location. AvailableThrusters = 
{“lateral”, “vertical”, 
“bowLateral”, “sternLateral”, 
“bowVertical”, 
“sternVertical”} 
 
Enumerated list of manually 
settable thrusters. 

- N 

 

23. <TimeStep> Element 

<TimeStep> resets the elapsed time for each closed loop control cycle (default 

is 0.1sec or 10 hz). Faster on-board computers and faster analog-to-digital (A/D and D/A) 

conversions permits shorter timestep periods. Sample given below: 

<TimeStep period=”0.5”/> 

 

S/N Command Description Format/Type Default  Required 

1. Period Loop interval. Decimal 
 

0.1 N 

 

24. <Trace> Element 

<Trace> turns vehicle trace feature on or off. Sample given below: 

<Trace/> 

 

S/N Command Description Format/Type Default  Required 

1. set Turn on or off. Boolean true N 
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25. <Wait> Element 

<Wait> causes the vehicle to wait a specified time before beginning execution of 

the next command. Sample given below: 

<Wait time=”10”/> 

 

S/N Command Description Format/Type Default  Required 

1. absolute Relative or absolute Boolean false N 

2. time Time to wait. Decimal - Y 

 

 

 

26. <Waypoint> Element 

<Waypoint> commands the vehicle to transit to a specified location. Vehicle 

will not stop when location reached.  Sample given below: 

<Waypoint x="25" y="50" z="75" obtainGpsFix="false"/> 

 

S/N Attribute Description Format Default Required

1. x x-coordinate. decimal - Y 

2. y y-coordinate. decimal - Y 

3. z z-coordinate. decimal - Y 

4. rpm Speed decimal - N 

5. altitudeControl Determines whether z is depth or height 
above the bottom. 

boolean false N 

6. timeOut timeOut attribute specifies a max allowable 
time for the command (negative means no 
limit) before failure. 

decimal -1.0 N 

7. obtainGpsFix Cause the vehicle to surface to obtain a 
GPS fix enroute to the next waypoint. 

boolean false N 

8. fixDuration determines how long the vehicle will remain 
surfaced to obtain a gps fix if the 
obtainGpsFix attribute is true. 

decimal - N 



161 

APPENDIX C. CDROM MATERIAL 

A. DIRECTORY AND FILE STRUCTURE 

1. Documentation 

Directory location: <CDRom>\documentation 

S/N Directory Filename Description 

1. \ 04Mar_Lee_AUVWorkbench.doc Thesis (in Microsoft WinWord format). 

2. \ 04Mar_Lee_AUVWorkbench.pdf Thesis (in Adobe Acrobat format). 

3. \ AUVWorkbench.ppt AUV Workbench presentation (in 
Microsoft Powerpoint format). 
AUV Workbench icons and 
component chart (in Microsoft 
Powerpoint format). 

4. \ AgentJabber.ppt Presentation slides using Agent 
Seminar on 17 Feb 2004 (in Microsoft 
Powerpoint format). 

5. \ XTC.ppt XML-based Tactical Chat presentation 
(in Microsoft Powerpoint format). 

6. \reference * Reference material used in the 
conduct of this thesis. 

 

2. AUV Workbench Application 

Directory location: <CDRom>\auv\Workbench\ 

S/N Directory Sub-directory 
and files 

Description 

1. im Java source code to the Jabber Instant 
Messaging and XTC Event Monitor modules. 

2. main Java source code to the main user interface and 
3D Visualization module. 

3. mission Java source code to the two-dimensional mission 
planner module. 

4. util Java source code for Common utilities. 

5. 

\src 

web Java source code to the web server 

6. im Java classes to the Jabber Instant Messaging 
and XTC Event Monitor modules. 

7. main Java classes to the main user interface and 3D 
Visualization module. 

8. 

\bin 

mission Java classes to the two-dimensional mission 
planner module. 
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S/N Directory Sub-directory 
and files 

Description 

9. util Java classes for Common utilities. 

10. web Java classes to the web server 

11. image Icon and splash-screen image files (in GIF, 
JPEG and PNG formats). 

12. sound Sound files (in .WAV). 

13. 

 

META-INF\ Contains manifest.mf for the JAR. 

14. \doc * HTML documentation. 

15. \dynamics * Java application to the hydrodynamics for the 
virtual environment. 

16. \execution * C++ application to the AUV robot execution. 

17. \Java Execution * Java application to the AUV robot execution. 

18. \javadocs ., \im, \main, 
\mission, \util, 
\web, \xsbc 

Java documentation of the source code. 

19. \lib * Java libraries. 

20. \Models * Sample VRML examples. 

21. \Scripts * Mission scripts. 

 

B. MAIN APPLICATION 

The main package is the main user interface for the rendering of the entire user 

interface including the placements of the user interfaces for the various modules and the 

3D visualization.  

Directory location: <CDRom>\auv\Workbench\src\main 

S/N Filename Description 

1. AMVW.java Main user interface for AUV Workbench. 

2. AUV.java Data structure for AUV information (not used). 
This is to be used for multiple AUVs in the same 
scene. 

3. AUVWorkbenchConfig.java AUV Workbench configuration data structure. 

4. ConfigApp.java Application configuration data structure. Used by 
configurable toolbar 

5. Const.java Application global constants. 

6. DynamicsExecutionThread.java Invoke a separate process dynamics (located in 
..\dynamics\dynamics). 

7. UITable.java User interface to display data in a tabular format. 
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S/N Filename Description 

8. VrmlLoader.java Xj3D loader for VRML models. 

9. X3DLoader.java Xj3D loader for X3D models (not used). 

 

C. MISSION PLANNING 

The mission package is responsible to render two-dimensional mission planner 

view on the top-right display pane.   

Directory location: <CDRom>\auv\Workbench\src\mission 

S/N Filename Description 

1. Mission.java Data structure to store Mission information. 

2. MissionBoundBoxView.java User interface to define the mission bounding 
box (area of interest) (Not used). 

3. MissionCommand.java Generic mission command data structure. 

4. MissionDepth.java Mission Depth command data structure. It 
defines commanded vehicle depth 

5. MissionDialog.java Mission information dialog user interface. 

6. MissionDrawArea.java Drawing canvas/area to display Mission Script 
graphically. 

7. MissionEnterTube.java Mission EnterTube command data structure.  It 
commands the vehicle to enter a specified 
recovery tube. Vehicle should be directly in front 
of opening, but heading can be off. 

8. MissionFollowLight.java Mission FollowLight command data structure.  It 
commands the vehicle to follow a light source to 
a recovery location. 

9. MissionHeading.java Mission Heading command data structure.  It 
sets commanded vehicle heading (disables 
waypoint or recovery control). 

10. MissionHelp.java Mission Help command data structure.  It causes 
a list of valid commands to be printed to the 
console (if available). 

11. MissionHover.java Mission Hover command data structure.  It 
commands the vehicle maintain position at a 
specified (x,y) position.  It can include heading 
and depth command. 

12. MissionInputOneView.java User interface to capture a single value input 
(boolean, integer) from user.  It is invoked by 
MissionDialog. 

13. MissionLateral.java Mission Lateral command data structure.  It sets 
both lateral thrusters to cause vehicle to slide 
right or left (turns off all automatic control 
modes). 



164 

S/N Filename Description 

14. MissionListCellRenderer.java Customized cell rendering in a JList (e.g., loading 
of icons and setting of colors). 

15. MissionListView.java User interface to display Mission commands in a 
Listbox.  Sends ACTION_PERFORMED event 
for double-click and ENTER key. 

16. MissionMissionScript.java Mission Script command data structure.  Loads a 
new mission script from a specified file. 

17. MissionPause.java Mission Pause command data structure.  It 
temporarily suspends vehicle operation (for 
bench test or virtual world use only); useful for 
getting evaluation checkpoints during testing. 

18. MissionPlanes.java Mission Planes command data structure.  Set 
bow and/or stern plane deflection angle (turns off 
all automatic control modes). 

19. MissionPoint.java Mission Point command data structure.  
MissionHover, MissionPosition, MissionWaypoint 
inherit from this. 

20. MissionPointView.java Mission Point user interface to manipulate 
MissionPoint data (includes Hover, Position, 
Waypoint). 

21. MissionPosition.java Mission Position command data structure.   It 
updates of vehicle position in the world (new 
navigation fix has been obtained).   It sets GPS 
zero point if not previously done. 

22. MissionPropeller.java Mission Propeller command data structure.  It 
manually set one or both propeller speeds. 

23. MissionQuit.java Mission Quit command data structure.  It ends 
the vehicle mission after zeroing all control 
settings (does not initiate surfacing procedure). 

24. MissionRealtime.java Mission RealTime Command Information.  It 
causes execution to run in realtime  (or turns 
realtime execution off). 

25. MissionResetTime.java Mission ResetTime command data structure.  It 
resets the vehicle time to a specified value. 

26. MissionRotate.java Mission Rotate command data structure.  It sets 
both lateral thrusters to cause vehicle to rotate 
(turns off all automatic control modes). 

27. MissionRudder.java Mission Rudder command data structure.  It sets 
rudder deflection (turns off all automatic control 
modes). 

28. MissionSonar.java Mission Sonar command data structure.  It 
commands the vehicle to assume a specified 
fixed station relative to a sonar target. 

29. MissionSpeed.java Mission Speed command data structure (not 
used). 
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S/N Filename Description 

30. MissionStandoff.java Mission Standoff command data structure.  It 
resets the acceptable standoff radius in meters 
around hover-points and waypoints. 

31. MissionTakeStation.java Mission TakeStation command data structure.  It 
commands the vehicle to assume a specified 
fixed station relative to a sonar target. 

32. MissionThruster.java Mission Thruster command data structure.  It 
enables or disables the vehicle's vertical and 
lateral thrusters (can be overridden by some 
control commands). 

33. MissionTimeStep.java Mission Timesetp command data structure. 
It resets the elapsed time for each closed loop 
control cycle (default is 0.1sec or 10 Hz). 

34. MissionTrace.java It turns vehicle trace feature on or off. 

35. MissionViewer.java 2D mission script viewer/planner. 

36. MissionViewerConfig.java 2D mission script viewer/planner configuration 
file (Not implemented yet). 

37. MissionWait.java Mission Wait command data structure.  It causes 
the vehicle to wait a specified time before 
beginning execution of the next command. 

38. MissionWaypoint.java Mission Waypoint command data structure. It 
commands the vehicle to transit to a specified 
location. 

39. TargetMine.java Target mine data structure. 

 

D. JABBER INSTANT MESSAGING 

The im package is used for standard Jabber instant messaging. It also implements 

the XTC Event Monitoring module (including the triggering of watch events and raising 

of alerts). 

Directory location: <CDRom>\auv\Workbench\src\im 

S/N Filename Description 

1. AgentConfig.java Data structure to store agent configuration that 
has been loaded from an XML file. 

2. Alert.java Data structure to store alert.  AlertSound, 
AlertURL and AlertVisual inherit from this  class. 

3. AlertSound.java Data structure for Sound Alerts, e.g., <Alert 
type="sound" src="sound/beep.au"/>. 

4. AlertURL.java Data structure for Hyperlink Alerts, e.g., <Alert 
type="url" 
src="http://www.google.com"/> 
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5. AlertVisual.java Data structure for Visual Alerts, e.g., <Alert 
type="visual" src="image/mine.gif"/> 

6. IMConfig.java Instant messaging session object. 

7. Monitor.java Event monitoring criteria for Jabber messages. 

8. UIAgent.java Event Monitoring/Jabber Instant Messaging User 
Interface. 

9. WatchEvent.java Data structure to store Watch Event and its 
corresponding alerts/actions. 

 

E. WEB 

The web server module is implemented in the web package. 

Directory location: <CDRom>\auv\Workbench\src\web 

S/N Filename Description 

1. HandleRequest.java Thread to handle incoming web server requests. 

2. HTTPServer.java Web server to receive HTTP requests. 

3. PostForm.java HTTP POST data structure. 

4. RequestHTTP.java Processing of incoming web server requests. 

 

F. UTILITIES 

Common utilities and procedures are kept in util package. 

Directory location: <CDRom>\auv\Workbench\src\util 

S/N Filename Description 

1. AgentPayload.java Data structure to store binary file data in XHTML 
portion of Jabber message. 

2. FileFilterEx.java Define a file filter (extension, description) in drop-
down combo-box 

3. FontDialog.java Selection of font type or allow typed-in text string, 
e.g., used in drawing application. 

4. IconFileView.java Display an icon for a particular file types. 

5. ImageDisplay.java Image viewer for the following formats: BMP, 
GIF, PNG, JPEG and SVG (using Batik). 

6. NumericInputHandler.java To restrict the no. of characters permitted in the 
JTextField. 

7. SortedList.java Sorted JList component. 

8. SplashScreen.java Splash screen. 

9. SystemMedia.java System Utilities to manipulate media files e.g., 
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S/N Filename Description 

sound. 

10. SystemUtil.java System Utilities to perform file copy, extract file 
name, directory, name only, property 
management and screen-capture. 

11. SystemUtilX.java Extra System Utilities to perform base-64 
encoding & decoding, ZIP, GZIP and HTTP file 
retrieval  

 

G. LIBRARIES 
List of required libraries provided from external sources. 

Directory location: <CDRom>\auv\Workbench\lib 

S/N Library Version Filename Description 

1. Apache Ant 1.6.0 ant.jar, optional.jar, 
xercesImpl.jar, xml-apis.jar 

Java-based build tool. 

2. Apache SOAP 2.3.1 soap.jar Base-64 encoding and 
decoding. 

3. Apache Xerces 2.5.0 xmlParserAPIs.jar, xml-
apis.jar, xercesImpl.jar   

XML parsing. 

4. Apache Xalan 2.5.0 xalan.jar XML transformation, 

5. Batik  1.5.0 batik-awt-util.jar, batik-
bridge.jar, batik-css.jar, batik-
dom.jar, batik-ext.jar, batik-
gvt.jar, batik-parser.jar, batik-
script.jar, batik-svg-dom.jar, 
batik-svggen.jar, batik-
swing.jar, batik-util.jar, batik-
xml.jar, js.jar 

A Java-based toolkit for 
apps that want to use 
images in the SVG format 
for viewing, creation and 
manipulation. 

6. Extensible Java 
3D 

M8 aviatrix3d-all.jar, gnu-regexp-
1.0.8.jar, httpclient.jar, j3d-org-
images.jar, j3d-org.jar, 
Jama.jar, js.jar, JXInput.jar, 
uri.jar, vlc_uri.jar, vrml97.jar, 
xj3d-all.jar 

Display of 3D VRML and 
X3D models 

7. Jivesoftware 
SMACK APIs 

1.2.1 smack.jar, smackx.jar. XMPP communications.   

8. dis-java-vrml - dis-java-vrml.jar Distributed Interactive 
Simulation. 
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H. CONFIGURATION FILE 
The AUV Workbench configuration file, 

AUVWorkbenchConfiguration.xml, is located in directory 

<CDRom>\auv\Workbench\bin.  
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APPENDIX D. AUV WORKBENCH DEVELOPER AND USER 
GUIDE 

A. SETUP  
This document explains how to install the current version (as of March, 2004) of 

the AUV Workbench application.  This setup procedure assumes the user is running in a 

Windows environment without any of the needed components installed. 

1. Download and install Sun Java SDK 1.4.2 (Available at 

http://java.sun.com/j2se/1.4.2/download.html.  Accessed on 15 February 2004).  Ensure 

that "JAVA_HOME" is set.   

2. Download and install Sun J3D API 1.3.1 (Available at 

http://java.sun.com/products/java-media/3D/download.html.  Accessed on 15 February 

2004). 

3. Download and install ANT 1.6.0 or above. This is required to build the 

AUV Workbench application.   (Available at http://ant.apache.org. Accessed on 15 

February 2004). 

4. Download and install Distributed Interactive Simulation module.  Ensure 

that "dis-java-vrml.jar" (only file required) is installed in "C:\vrtp" and it is set in the 

"CLASSPATH". 

5. Download and unzip AUV Workbench application (source and 

executable) into directory "C:\auv\Workbench". 

6. Download and install list of applications and tools in Section C.  

 

B. HOW TO RUN IT 

By default, the AUV Workbench application shall be located in 

C:\auv\Workbench.  To run it, go to C:\auv\Workbench\bin directory and 

double-click on run.bat. 
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C. HOW TO COMPILE IT 
To compile and build the AUV Workbench application, go to 

C:\auv\Workbench\ directory and double-click on antbuild.bat. 

 

D. TOOLS AND APPLICATIONS 
List of tools and useful applications: 

S/N Name Version Description Available at 

1. jEdit 4.1 Java text editor. http://www.jedit.org  

2. Mozilla 1.6 Internet browser. http://www.mozilla.org  

3. ParallelGraphics 

Cortona 

4.2 ParallelGraphics 

browser VRML plugin. 

http://www.parallelgraphics.com/products/cortona  

4. Rhymbox 1.6 Jabber instant 

messaging client. 

http://www.rhymbox.com  

 ParallelGraphics 

VrmlPad 

2.0 Vrml editor. http://www.parallelgraphics.com/products/vrmlpad  

5. X3D Edit 2.4 X3D Graphics editor. http://www.web3d.org  

6. Xj3D M8 Java-based VRML and 

X3D loader. 

http://www.xj3d.org  

 

E. FREQUENTLY ASKED QUESTIONS (FAQ) 

1. Unable to Start AUV Application 

• Install Java JDK 1.4.2 .  

• Install Java 3D .  

• Go to AUV's "\bin" directory, double-click on "run.bat".  

• List of files that are required by Java3D:  

• J3D.dll, J3DUtils.dll, j3daudio.dll located in 

%JAVA_HOME/jre/bin.  
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• vecmath.jar, j3dcore.jar, j3dutils.jar, j3daudio.jar located in 

%JAVA_HOME%/jre/lib/ext. 

 

F. COMPONENT CHART 

 
Figure 122.   Main Application User Interface. 
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Figure 123.   2D Mission Planning and 3D Visualization User Interface. 

 

 
Figure 124.   Execution and Hydro-Dynamics User Interface. 
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Figure 125.   Font Dialog User Interface. 

 

 
Figure 126.   Application Toolbar. 
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Figure 127.   Customized Jabber Client – Message Settings Module. 

 

 
Figure 128.   Customized Jabber Client – Message Send Module. 
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Figure 129.   Customized Jabber Client – Message Send Receive. 

 

 
Figure 130.   Web Server. 
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APPENDIX E. PROCEDURE TO PACKAGE BINARY DATA 

//------------------------------------------------------------------------ 
/** 
 * base64 encode data from a file and create XML Document 
 * perform zipping based on file formats (see SystemUtil.fileCanZip) 
 * 
 * @param sTagName tag name to be used 
 * @param lstAP list of AgentPayload objects  
 *        (file name, description & URLs) 
 * @param flagZip whether to gzip zippable files 
 * @return created XML document 
 */ 
public static org.w3c.dom.Document encodeDataToXML(String sTagName, 
                                                   ArrayList lstAP, 
                                                   boolean flagZip) { 
  org.w3c.dom.Document xmlDoc  = null; 
  org.w3c.dom.Element eWrapper = null; 
  org.w3c.dom.Element ePayload = null; 
  org.w3c.dom.Element eComment = null; 
  org.w3c.dom.Element eURL     = null; 
  boolean fZipit               = false; // false; // 
  boolean fCdata               = false; // false; // 
  int numPayload               = 0; 
 
  AgentPayload objAP           = null; 
  String srcFile               = ""; 
  String sDesc                 = ""; 
  String arrURL[]; 
 
  if (sTagName.length()>0) { // root to append <AgentPayload> elements 
    //Create an XML Document 
    try { 
      DocumentBuilderFactory dbFactory =  
                                   DocumentBuilderFactory.newInstance(); 
      DocumentBuilder docBuilder       = dbFactory.newDocumentBuilder(); 
      xmlDoc                           = docBuilder.newDocument(); 
    } catch(Exception ex) { 
      System.out.println("encodeDataToXML() Error " + ex.getMessage() ); 
    } 
    // <AgentJabber> wrapper around 1 or many <AgentPayload> tags 
    eWrapper = xmlDoc.createElement(sTagName); 
 
    // loop through list of AgentPayload objects 
    for (int iAP=0; iAP<lstAP.size(); iAP++) { 
      objAP   = (AgentPayload) lstAP.get(iAP); 
      srcFile = objAP.getFilepath(); 
      sDesc   = objAP.getDesc(); 
      arrURL  = objAP.getURLs(); 
 
      if ( srcFile.length()>0 )  { 
        // check whether file is zippable 
        fZipit = SystemUtil.fileCanZip(srcFile); 
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        try { 
          byte[] originalBytes = null; 
          byte[] zippedBytes   = null; 
 
          originalBytes = SystemUtil.fileRead(srcFile); 
          if (originalBytes.length<=DEFAULT_PAYLOAD_SIZE) { 
            fCdata = true; 
          } 
          //-------------------------------------------------------------- 
          // perform Gzip if file format is zippable & flagZip is SET 
          if (fZipit && flagZip) { 
            ByteArrayOutputStream baos = new ByteArrayOutputStream(); 
            GZIPOutputStream zos       = new GZIPOutputStream(baos); 
            zos.write(originalBytes); 
            zos.flush(); 
            zos.finish(); 
            zos.close(); 
 
            zippedBytes = baos.toByteArray(); 
 
            // determine whether the data is too big to be packaged within 
            // the CDATA section of the JABBER message 
            // It is possible to produce a ZIP file that is bigger than 
            // the original file size, if so, do not use ZIPPed data 
            if (zippedBytes.length>originalBytes.length) 
              fZipit = false; 
            else if (zippedBytes.length<=DEFAULT_PAYLOAD_SIZE) { 
              fCdata = true; 
            } 
          } 
          // load through list of files 
          // file payload 
          ePayload  = xmlDoc.createElement(TAG_AGENT_PAYLOAD); 
 
          // set attributes in element 
          ePayload.setAttribute( ATTR_FILENAME,  
               SystemUtil.extractFileName(srcFile) ); // original filename 
          ePayload.setAttribute( ATTR_CONTENT_TRANSFER_ENCODING,  
               "base-64" ); // encoding technique defaulted to base-64 
          ePayload.setAttribute( ATTR_DESC, sDesc ); // description 
          ePayload.setAttribute( ATTR_TIMESTAMP, 
                SystemUtil.getDateTime14() ); // time-stamp 
          ePayload.setAttribute( ATTR_CHECKSUM,  
                "1234567" ); // checksum not implemented yet 
          ePayload.setAttribute( ATTR_FILESIZE,  
              Long.toString( SystemUtil.fileSize(srcFile) ) ); //file size 
 
          // if performed Gzip, then set "content-type" 
          // atribute accordingly 
          // store base-64 encoded data in CDATA section 
          if (fZipit && flagZip) { 
            ePayload.setAttribute(ATTR_CONTENT_TYPE,  
                "application/x-zip-compressed"); 
            if (fCdata) 
              ePayload.appendChild(  
                xmlDoc.createCDATASection( Base64.encode(zippedBytes) ) ); 
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            else 
              ePayload.appendChild( xmlDoc.createCDATASection( "" ) ); 
          } 
          else { 
            ePayload.setAttribute(ATTR_CONTENT_TYPE,  
              SystemUtil.getContentTypeFromName(srcFile)); 
            if (fCdata) 
              ePayload.appendChild(  
              xmlDoc.createCDATASection( Base64.encode(originalBytes) ) ); 
            else 
              ePayload.appendChild( xmlDoc.createCDATASection( "" ) ); 
          } 
          // append list of URLs e.g. 
          //     <url>http://server1/GAMMA.bmp</url> 
          //     <url>http://server2/GAMMA.bmp</url> 
          //     <url>http://server3/GAMMA.bmp</url> 
          if ( (arrURL!=null) && (arrURL.length>0)) { 
            for (int i=0; i<arrURL.length; i++) { 
              if (arrURL[i].length()>0) { 
                eURL = xmlDoc.createElement(TAG_URL); 
                eURL.appendChild( xmlDoc.createTextNode( arrURL[i]) ); 
                ePayload.appendChild(eURL); 
              } 
            } 
          } 
          // add <AgentPayload> to <AgentJabber> 
          eWrapper.appendChild(   
                     xmlDoc.createComment( "Payload "+ (++numPayload) ) ); 
          eWrapper.appendChild(ePayload); 
        } catch (IOException e) { 
          writeErr( "encodeDataToXML() Error " + e.getMessage() ); 
          return null; 
        } 
      } 
      else 
        return null; 
    } // loop through list of <AgentPayload> objects 
 
    // add wrapper to XML document 
    xmlDoc.appendChild(eWrapper); 
    return xmlDoc; 
  } 
  else 
    return null; 
} // encodeDataToXML 

Figure 131.   Procedure to encode binary data to XML 
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//---------------------------------------------------------------------------
/** 
 * read in XML data from a file or a string 
 * and search for a particular tag, 
 * base-64 decode XML string and save as a file. 
 * Note:  
 * if destination filename is specified, the filename in the tag attribute  
 * is used 
 * <AgentJabber filename="hello.bmp"> 
 * 
 * CDATA maybe kept empty if the file size is too big.   
 * To retrieve the file from 
 * storage location, parse through list of URLs  
 * and perform HTTP GET or FTP GET. 
 * FTP GET is not implemented yet. 
 * 
 * @param srcXml source XML file or string 
 * @param destFile destination output file, attribute value used if empty 
 * @param sTagName tag name to be used 
 * @param bFile true if read from file, otherwise it is a string 
 * @return list of destination filenames saved to 
 * @throws IOException XML exception error 
 */ 
public static ArrayList decodeXMLToData(String srcXml, 
                                        String destFile, 
                                        String sTagName, 
                                        boolean bFile) throws IOException { 
  boolean fUnZipit        = false; 
 
  String valFileName      = ""; 
  String valDesc          = ""; 
  String valTimeStamp     = ""; 
  String valContentType   = ""; 
  String valContentEncode = ""; 
  long valFileSize        = 0; 
  long valCheckSum        = 0; 
  String destDir          = "./";  
 
  // determine the destination directory to save the files to 
  if ( new File(getDestDir()).isDirectory() ) { 
    destDir = getDestDir(); 
  } 
 
  // list of AgentPayload objects 
  ArrayList filesDest = new ArrayList(); 
  ArrayList lstURL    = new ArrayList(); 
 
  if ((srcXml.length()>0) && (sTagName.length()>0)) { 
    // read in XML data and create XML document 
    org.w3c.dom.Document xmldoc = null; 
    if (bFile) 
      xmldoc = getXMLDocFromFile(srcXml); 
    else 
      xmldoc = getXMLDocFromString(srcXml); 
 
    // go to wrapper tag e.g. <AgentJabber> 
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    NodeList nlWrapper = xmldoc.getElementsByTagName( sTagName ); 
    for (int idx = 0; idx <nlWrapper.getLength(); idx++) { 
      Node child = nlWrapper.item( idx ); 
      // get list of child nodes under wrapper 
      ArrayList cnWrapper =  (ArrayList) getTargetChildNodes(  
                              child, new String [] {TAG_AGENT_PAYLOAD} ); 
      for ( Iterator i=cnWrapper.iterator(); i.hasNext(); ) { 
        Node level1   = (Node) i.next(); 
        String nChild = level1.getNodeName(); // child nodes 
 
        if ( nChild.equalsIgnoreCase( TAG_AGENT_PAYLOAD ) ) { 
          Node nPayload = level1; 
 
          try { 
            // <AgentJabber filename="hello.bmp">...,  
            // variable 'attrFileName' return "hello.bmp" 
            if ( nPayload!=null ) { 
 
              // file name 
              valFileName   = nPayload.getAttributes(). 
                              getNamedItem(ATTR_FILENAME).getNodeValue(); 
 
              // file description 
              valDesc       = nPayload.getAttributes(). 
                              getNamedItem(ATTR_DESC).getNodeValue(); 
 
              // time stamp 
              valTimeStamp  = nPayload.getAttributes(). 
                              getNamedItem(ATTR_TIMESTAMP).getNodeValue(); 
 
              // file size 
              try { 
                valFileSize = Long.parseLong(nPayload.getAttributes(). 
                              getNamedItem(ATTR_FILESIZE).getNodeValue()); 
              } 
              catch (Exception ex) { 
                valFileSize = 0; 
              } 
 
              // check sum 
              try { 
                valCheckSum = Long.parseLong(nPayload.getAttributes(). 
                              getNamedItem(ATTR_CHECKSUM).getNodeValue()); 
              } 
              catch (Exception ex) { 
                valCheckSum = 0; 
              } 
 
              // content encoding 
              valContentEncode = nPayload.getAttributes(). 
                 getNamedItem(ATTR_CONTENT_TRANSFER_ENCODING).getNodeValue();
 
              // content type 
              valContentType   = nPayload.getAttributes(). 
                              getNamedItem(ATTR_CONTENT_TYPE).getNodeValue();
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              // determine whether decompression is necessary based on the 
              // "content-type" attribute 
              if (valContentType.equalsIgnoreCase( 
                                             "application/x-zip-compressed"))
                fUnZipit = true; 
 
              // if destination filename is specified,  
              // the filename in the tag attribute is used 
              destFile = destDir + valFileName; 
            } 
          } 
          catch (Exception ex) { 
            ex.printStackTrace(); 
          } 
          //-----------------------------------------------------------------
          // get list of URLs 
          lstURL.clear(); 
          String strURL    = ""; 
          ArrayList clPayload = (ArrayList)  
                    getTargetChildNodes( nPayload, new String [] {TAG_URL} );
          for ( Iterator ii=clPayload.iterator(); ii.hasNext(); ) { 
            Node childPayload = (Node) ii.next(); 
            if ( childPayload.getNodeName().equalsIgnoreCase(TAG_URL) ) {  
              try { 
                strURL = childPayload.getFirstChild().getNodeValue(); 
                lstURL.add(strURL); 
              } 
              catch (Exception ex) { // set to default directory 
                strURL = ""; 
              } 
            } // within "url" tag 
          } // loop "AgentPayload" children 
          //-----------------------------------------------------------------
          // get CDATA value from element, note "<![CDATA[...]]>"  
          // are automatically stripped 
          // if (nPayload.getFirstChild().getNodeValue()!=null) {  
          // something in CDATA 
          if (nPayload.getFirstChild().getNodeType()== 
              nPayload.CDATA_SECTION_NODE) { // CDATA node? 
            StringBuffer binaryData = new  
                     StringBuffer( nPayload.getFirstChild().getNodeValue() );
 
            // perform base64 decoding 
            byte[] buffer = Base64.decode(binaryData.toString()); 
 
            if (fUnZipit) { 
              ByteArrayInputStream bais  = new ByteArrayInputStream(buffer); 
              GZIPInputStream zis        = new GZIPInputStream(bais); 
              ByteArrayOutputStream baos = new ByteArrayOutputStream(); 
              int c = -1; 
              while ((c = zis.read()) != -1) { 
                baos.write(c); 
              } 
              baos.flush(); 
 
              buffer = baos.toByteArray(); 
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            } 
            else { 
              writeLn("No unzipping required."); 
            } 
 
            // write out data to predefined filename provided a filename  
            if ( destFile.length()>0) { 
              File fDest                = new File(destFile); 
              writeLn("writing CDATA to ["+ fDest.getAbsolutePath() +"]"); 
              BufferedOutputStream bos = new BufferedOutputStream( 
                                                new FileOutputStream(fDest));
              bos.write(buffer); 
              bos.close(); 
            } 
          } 
          else { // no CDATA available, retrieve from URLs 
            for (int j=0; j<lstURL.size(); j++) { 
              strURL = (String) lstURL.get(j); 
              if (strURL.length()>0) { 
                //-----------------------------------------------------------
                // HTTP/web server 
                if (strURL.toLowerCase().startsWith("http://")) { 
                  // e.g. http://www.mango.com/3D.svg 
                  String retFile = urlGetFile(strURL, destFile, "");  
                  if (retFile.length()>0) {// downloaded file 
                    destFile = retFile; 
                    break; 
                  } 
                } 
                //-----------------------------------------------------------
                // FTP server 
                else if (strURL.toLowerCase().startsWith("ftp://")) { 
                  // e.g. ftp://ftp.mango.com/3D.svg 
                  // destFile = destDir + "FTP_GET"; 
                } 
                //-----------------------------------------------------------
                // Local/networked file server/location 
                else { 
                  // e.g. ../../../fruit/3D.svg, \\terra\fruit\3D.svg? 
 
 
                  File urlFile = new File(strURL); 
                  // check that the file can be found 
                  if ( urlFile.exists() ) { 
                    if ( SystemUtil.filecopy(strURL, destFile) ) 
                      break; 
                  } 
                } 
                //-----------------------------------------------------------
              } 
            } // loop thru' list of URLs 
          } // no CDATA available, get from storage server/location 
        } // within "AgentPayload" 
        String arrURL[] = (String[]) lstURL.toArray( new String[0] ); 
        AgentPayload agtP = new AgentPayload(destFile, valDesc, 
                                            valContentEncode, valContentType,
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                                            valTimeStamp, 
                                            valFileSize, valCheckSum, 
                                            arrURL ); 
        filesDest.add(agtP); 
      } // loop "AgentJabber" children, looking for "AgentPayload" 
    } // within "AgentJabber" tag 
 
    return filesDest; 
    // for statistical purposes 
    /* 
    double readBytes       = buffer.length; 
    double totalChars      = binaryData.toString().length(); 
    System.out.println("Encoded " + readBytes + " bytes using " + 
                       totalChars + " characters for an average length of " +
                       totalChars/readBytes + " characters."); 
    */ 
  } 
  else 
    return null; 
} // decodeXMLToData 

Figure 132.   Procedure to decode binary data to XML 
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APPENDIX F. GNS.JAVA 

The Java class used to convert GEOName Server (GNS) ASCII data files to XML 

format. 
//---------------------------------------------------------------------------
/** 
 * Filename      : GNS.java 
 * Description   : GEOnet Names Server (GNS) 
 *                 requires Apache Xerces and util.SystemUtil 
 * 
 *                 e.g. // convert text-based GNS format to XML form 
 *                      GNS.convertTextToXML("C:/test/sn.txt"); 
 * 
 * Created Date  : 29 February 2004 
 * Revised Date  : 29 February 2004 
 * Course        : Thesis 
 * Program       : GNS Object and XML converter 
 * Compiler      : JDK 1.4.2 onwards 
 * Platform      : Windows 2000/Windows XP 
 * @author Lee, Chin Siong Daryl 
 * @version 1.0 
 */ 
//---------------------------------------------------------------------------
package main; 
import java.io.*; 
import java.util.*; 
 
// JAXP packages 
import javax.xml.parsers.*; 
import javax.xml.transform.*; 
import javax.xml.transform.stream.*; 
 
import org.apache.xml.serialize.*; 
import org.w3c.dom.*; 
import org.xml.sax.*; 
 
public class GNS { 
  public static String TAG_GNS     = "GNS"; 
  public static String ATTR_CTRY   = "ctry"; 
  public static String ATTR_NUMREC = "numRecords"; 
 
  public static String TAG_FEATURE       = "FEATURE"; 
  public static String ATTR_LAT          = "lat"; 
  public static String ATTR_LONG         = "long"; 
  public static String ATTR_DMS_LAT      = "dmsLat"; 
  public static String ATTR_DMS_LONG     = "dmsLong"; 
  public static String ATTR_UTM          = "utm"; 
  public static String ATTR_JOG          = "jog"; 
  public static String ATTR_GENERIC      = "generic"; 
  public static String ATTR_SHORT_FORM   = "shortForm"; 
  public static String ATTR_SORT_NAME    = "sortName"; 
  public static String ATTR_FULL_NAME    = "fullName"; 
  public static String ATTR_FULL_NAME_ND = "fullNameND"; 
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  public static String ATTR_MODIFY_DATE  = "modifyDate"; 
  public static String ATTR_RC           = "rc"; 
  public static String ATTR_UFI          = "ufi"; 
  public static String ATTR_UNI          = "uni"; 
  public static String ATTR_FC           = "fc"; 
  public static String ATTR_DSG          = "dsg"; 
  public static String ATTR_PC           = "pc"; 
  public static String ATTR_ADM1         = "adm1"; 
  public static String ATTR_ADM2         = "adm2"; 
  public static String ATTR_CC1          = "cc1";; 
  public static String ATTR_CC2          = "cc2"; 
  public static String ATTR_DIM          = "dim"; 
  public static String ATTR_NT           = "nt"; 
  public static String ATTR_LC           = "lc"; 
 
  String _sRC; 
  String _sUFI; 
  String _sUNI; 
  String _sLAT; 
  String _sLONG; 
  String _sDMS_LAT; 
  String _sDMS_LONG; 
  String _sUTM; 
  String _sJOG; 
  String _sFC; 
  String _sDSG; 
  String _sPC; 
  String _sCC1; 
  String _sADM1; 
  String _sADM2; 
  String _sDIM; 
  String _sCC2; 
  String _sNT; 
  String _sLC; 
  String _sSHORT_FORM; 
  String _sGENERIC; 
  String _sSORT_NAME; 
  String _sFULL_NAME; 
  String _sFULL_NAME_ND; 
  String _sMODIFY_DATE; 
 
  public GNS(String sRC, 
             String sUFI, 
             String sUNI, 
             String sLAT, String sLONG, 
             String sDMS_LAT, String sDMS_LONG, 
             String sUTM, String sJOG, 
             String sFC, String sDSG, 
             String sPC, String sCC1, 
             String sADM1, String sADM2, 
             String sDIM, String sCC2, 
             String sNT, String sLC, 
             String sSHORT_FORM, 
             String sGENERIC, String sSORT_NAME, 
             String sFULL_NAME, 
             String sFULL_NAME_ND, String sMODIFY_DATE) { 
    _sRC           = sRC; 
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    _sUFI          = sUFI; 
    _sUNI          = sUNI; 
    _sLAT          = sLAT; 
    _sLONG         = sLONG; 
    _sDMS_LAT      = sDMS_LAT; 
    _sDMS_LONG     = sDMS_LONG; 
    _sUTM          = sUTM; 
    _sJOG          = sJOG; 
    _sFC           = sFC; 
    _sDSG          = sDSG; 
    _sPC           = sPC; 
    _sCC1          = sCC1; 
    _sADM1         = sADM1; 
    _sADM2         = sADM2; 
    _sDIM          = sDIM; 
    _sCC2          = sCC2; 
    _sNT           = sNT; 
    _sLC           = sLC; 
    _sSHORT_FORM   = sSHORT_FORM; 
    _sGENERIC      = sGENERIC; 
    _sSORT_NAME    = sSORT_NAME; 
    _sFULL_NAME    = sFULL_NAME; 
    _sFULL_NAME_ND = sFULL_NAME_ND; 
    _sMODIFY_DATE  = sMODIFY_DATE; 
  } // GNS 
 
  public String getRC() { return _sRC; }     // getRC() 
  public String getUFI() { return _sUFI; }   // getUFI() 
  public String getUNI() { return _sUNI; }   // getUNI 
  public String getLAT() { return _sLAT; }   // getLAT 
  public String getLONG() { return _sLONG; } // getLONG 
  public String getDMS_LAT() { return _sDMS_LAT; }   // getDMS_LAT 
  public String getDMS_LONG() { return _sDMS_LONG; } // getDMS_LONG 
  public String getUTM() { return _sUTM; }   // getUTM 
  public String getJOG() { return _sJOG; }   // getJOG 
  public String getFC() { return _sFC; }     // getFC 
  public String getDSG() { return _sDSG; }   // getDSG 
  public String getPC() { return _sPC; }     // getPC 
  public String getCC1() { return _sCC1; }   // getCC1 
  public String getADM1() { return _sADM1; } // getADM1 
  public String getADM2() { return _sADM2; } // getADM2 
  public String getDIM() { return _sDIM; }   // getDIM 
  public String getCC2() { return _sCC2; }   // getCC2 
  public String getNT() { return _sNT; }     // getNT 
  public String getLC() { return _sLC; }     // getLC 
  public String getSHORT_FORM() { return _sSHORT_FORM; } // getSHORT_FORM 
  public String getGENERIC() { return _sGENERIC; }       // getGENERIC 
  public String getSORT_NAME() { return _sSORT_NAME; }   // getSORT_NAME 
  public String getFULL_NAME() { return _sFULL_NAME; }   // getFULL_NAME 
  public String getFULL_NAME_ND() { return _sFULL_NAME_ND; } // 
getFULL_NAME_ND 
  public String getMODIFY_DATE() { return _sMODIFY_DATE; }   // 
getMODIFY_DATE 
 
  public String toString() { 
    return getLAT() +", "+ getLONG() +", "+ getFULL_NAME()+", "+ 
getMODIFY_DATE(); 
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  } // toString 
  //-------------------------------------------------------------------------
  /** 
   * load from text-based GNS data file and save to XML 
   * (same filename, different extension) 
   * @param srcFile GNS text file 
   * @return true=successful, false if failed 
   */ 
  public static boolean convertTextToXML(String srcFile) { 
    if (new File(srcFile).exists()) { 
      try { 
        FileInputStream fis = new FileInputStream(srcFile); 
        BufferedReader dis  = new BufferedReader(new InputStreamReader(fis));
        int count           = 0; 
        int countError      = 0; 
        String sBuf; 
        String arrS[]; 
        ArrayList lst = new ArrayList(); 
 
        while ((sBuf = dis.readLine()) != null) { 
          arrS = sBuf.split("\t"); 
          // debugging writeLn( "["+ arrS.length +"]"); 
          if (count>0) { // skip header 
            lst.add( new GNS(arrS[0],  arrS[1],  arrS[2],  arrS[3],  arrS[4],
                             arrS[5],  arrS[6],  arrS[7],  arrS[8],  arrS[9],
                             arrS[10], arrS[11], arrS[12], arrS[13], 
arrS[14], 
                             arrS[15], arrS[16], arrS[17], arrS[18], 
arrS[19], 
                             arrS[20], arrS[21], arrS[22], arrS[23], arrS[24] 
) ); 
          } 
          count++; 
        } 
        writeLn("No. of GNS records read from ["+ srcFile +"] is "+ count ); 
        //-------------------------------------------------------------------
        // save as XML 
        String fXML = util.SystemUtil.changeFileExt(srcFile, ".xml"); 
        saveAsXML(lst, fXML); 
 
        writeLn("Generated GNS XML file ["+ fXML +"]" ); 
 
        return true; 
      } catch(Exception e) { 
        writeErr("File error: " + e.getMessage() + " on file " + srcFile); 
      } 
    } 
    return false; 
  } // convertTextToXML 
  //-------------------------------------------------------------------------
  /** 
   * create an XML document from list of GNS records 
   * @param attrCtry abbreviated country name 
   * @param lst list of GNS objects 
   * @return XML document 
   */ 
  private static Document createXMLDocument(String attrCtry, ArrayList lst) {
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    Element main; 
    Element root; 
    Element tFeature = null; 
    Document _xmlDoc = null; 
 
    try { 
      //Create a XML Document 
      DocumentBuilderFactory dbFactory = 
DocumentBuilderFactory.newInstance(); // 
DocumentBuilderFactoryImpl.newInstance(); 
      DocumentBuilder docBuilder = dbFactory.newDocumentBuilder(); 
      _xmlDoc = docBuilder.newDocument(); 
    } catch(Exception e) { 
      System.out.println("Error " + e); 
    } 
    // add stylesheet 
//    Map PITable = new HashMap(2,(float)0.5); //try this and see what 
happens to the output 
    //-----------------------------------------------------------------------
    root = _xmlDoc.createElement(TAG_GNS); 
    root.setAttribute( ATTR_CTRY, attrCtry ); // which country 
    root.setAttribute( ATTR_NUMREC, Integer.toString(lst.size()) );  
    for (int i=0; i<lst.size(); i++) { 
      tFeature = _xmlDoc.createElement(TAG_FEATURE); 
      tFeature.setAttribute(ATTR_LAT, ((GNS) lst.get(i)).getLAT() ); 
      tFeature.setAttribute(ATTR_LONG, ((GNS) lst.get(i)).getLONG() ); 
      tFeature.setAttribute(ATTR_DMS_LAT, ((GNS) lst.get(i)).getDMS_LAT() ); 
      tFeature.setAttribute(ATTR_DMS_LONG, ((GNS) lst.get(i)).getDMS_LONG() 
); 
      tFeature.setAttribute(ATTR_UTM, ((GNS) lst.get(i)).getUTM() ); 
      tFeature.setAttribute(ATTR_JOG, ((GNS) lst.get(i)).getJOG() ); 
      tFeature.setAttribute(ATTR_GENERIC, ((GNS) lst.get(i)).getGENERIC() ); 
      tFeature.setAttribute(ATTR_SHORT_FORM, ((GNS) 
lst.get(i)).getSHORT_FORM() ); 
      tFeature.setAttribute(ATTR_SORT_NAME, ((GNS) lst.get(i)).getSORT_NAME() 
); 
      tFeature.setAttribute(ATTR_FULL_NAME, ((GNS) lst.get(i)).getFULL_NAME() 
); 
      tFeature.setAttribute(ATTR_FULL_NAME_ND, ((GNS) 
lst.get(i)).getFULL_NAME_ND() ); 
      tFeature.setAttribute(ATTR_MODIFY_DATE, ((GNS) 
lst.get(i)).getMODIFY_DATE() ); 
      tFeature.setAttribute(ATTR_RC,   ((GNS) lst.get(i)).getRC() ); 
      tFeature.setAttribute(ATTR_UFI,  ((GNS) lst.get(i)).getUFI() );; 
      tFeature.setAttribute(ATTR_UNI,  ((GNS) lst.get(i)).getUNI() ); 
      tFeature.setAttribute(ATTR_FC ,  ((GNS) lst.get(i)).getFC() ); 
      tFeature.setAttribute(ATTR_DSG,  ((GNS) lst.get(i)).getDSG() ); 
      tFeature.setAttribute(ATTR_PC,   ((GNS) lst.get(i)).getPC() ); 
      tFeature.setAttribute(ATTR_ADM1, ((GNS) lst.get(i)).getADM1() ); 
      tFeature.setAttribute(ATTR_ADM2, ((GNS) lst.get(i)).getADM2() ); 
      tFeature.setAttribute(ATTR_CC1,  ((GNS) lst.get(i)).getCC1() ); 
      tFeature.setAttribute(ATTR_CC2,  ((GNS) lst.get(i)).getCC2() ); 
      tFeature.setAttribute(ATTR_DIM,  ((GNS) lst.get(i)).getDIM() ); 
      tFeature.setAttribute(ATTR_NT,   ((GNS) lst.get(i)).getNT() ); 
      tFeature.setAttribute(ATTR_LC,   ((GNS) lst.get(i)).getLC() ); 
 
 



190 

      root.appendChild(tFeature); 
      // debugging writeLn( ((GNS) lst.get(i)).toString() ); 
    } 
 
    //add to the root Element 
    _xmlDoc.appendChild(root); 
 
    return _xmlDoc; 
  } // createXMLDocument 
  //-------------------------------------------------------------------------
  /** 
   * save GNS data in XML form 
   * @param lstGNS list of GNS objects 
   * @param filename file to be saved to 
   */ 
  public static void saveAsXML(ArrayList lstGNS, String filename) { 
    try { 
      Document doc = 
createXMLDocument(util.SystemUtil.extractFileNameOnly(filename), 
                                       lstGNS); 
      if (doc!=null) { 
        OutputFormat outputFormat = new OutputFormat(doc); 
        outputFormat.setLineWidth(OutputFormat.Defaults.LineWidth); 
        outputFormat.setIndent(OutputFormat.Defaults.Indent); 
 
        XMLSerializer fileSerializer = new XMLSerializer(new 
FileWriter(filename), outputFormat); 
        fileSerializer.serialize(doc); 
      } 
      else { 
        writeErr("unable to save XML to ["+ filename +"]"); 
      } 
    } 
    catch (IOException ioEx) { 
      writeErr("Error " + ioEx); 
    } 
  } // saveScriptXML 
  //-------------------------------------------------------------------------
  /** 
   * write a error messgae to console 
   * @param aStr line to be written to console 
   */ 
  public static void writeErr(String aStr) { 
    System.err.println(aStr); 
  } // writeErr 
  //-------------------------------------------------------------------------
  /** 
   * write a line to console 
   * @param aStr line to be written to console 
   */ 
  public static void writeLn(String aStr) { 
    System.out.println(aStr); 
  } // writeLn 
} // GNS 

 



191 

LIST OF REFERENCES 

[Ant 2004] Apache Ant. http://ant.apache.org/faq.html  Accessed on 15 January 2004. 
 
[Ayala 2002] Miguel Arnaldo Ayala, “Execution Level Java Software and Hardware for 
the NPS Autonomous Underwater Vehicle”, Master’s Thesis, Naval Postgraduate School, 
Monterey, California, September 2002.  Available at: 
http://library.nps.navy.mil/uhtbin/cgisirsi/r3TGkbHCIu/99460007/523/3643  Accessed on 
January 2004. 
 
[Brutzman 1994] Brutzman, D.P., A Virtual World for an Autonomous Underwater 
Vehicle, PhD Dissertation, Naval Postgraduate School, Monterey, California, December 
1994.  Available at: http://web.nps.navy.mil/~brutzman/dissertation/  Accessed on 
January 2004. 
 
[Brutzman 2004] Don Brutzman. X3D Sonar Visualization and Tactical Web Services for 
Undersea Warfare (USW).   Available at 
http://www.movesinstitute.org/xmsf/projects/sonar-vis/NpsSonarVisualizationTda.ppt. 
Accessed on February 2004. 
 
[CML] Chemical Markup Language (CML). http://www.xml-cml.org/ Accessed on 
February 2004.   
 
[DAML] Defense Advanced Research Projects Agency (DARPA) Agent Markup 
Language (DAML) for agents. http://www.daml.org/ Accessed on February 2004. 
 
[Eclipse 2004] Eclipse Platform. http://www.eclipse.org. Accessed on January 2004. 
 
[Ferber 1999] Ferber, J., Multi-Agent Systems, An Introduction to Distributed Artificial 
Intelligence. Addison-Wesley, Harlow, England, 1999. 
 
[Girard] Anouck Renee Girard. An Overview of Emerging results in Networked Multi-
Vehicle Systems. 
 
[GeoML] Geography Markup Language to describe geographic information. 
http://www.opengis.org Accessed on February 2004 
 
[Gilles 1998] Gilles Fauconnier, Mark Turner. Conceptual Integration Networks. 
Available at http://blending.standford.edu.  Accessed on March 2004. 
 
[Grunesien 2002] Adrien Gruneisen, Yann Henriet. 3D Model of the Aries Autonomous 
Underwater Vehicle (AUV), JavaDoc for Dynamics, Software, AUV Mission-
Visualization, and AUV Dynamics Control Workbench in Matlab, Naval Postgraduate 
School, Monterey, California, October 2002. 
 



192 

[Hawkins 2003] Darrin L. Hawkins, Barbara C. Van Leuvan, An XML-based Mission 
Command Language for Autonomous Underwater Vehicles (AUVs), June 2003. 
Available at: http://library.nps.navy.mil/uhtbin/cgisirsi/kMbLeal39E/99460007/523/4789  
 
[Hiles 2003] John Hiles. “Cognitive Subjects and Operations: Putting Subjects into 
Simulations; Moving Agents Out of their Simulation Box”. Available at 
http://www.movesinstitute.org/openhouse2003slides/Hilesopenhouse2003.ppt 
 
[Holden 1995] Holden, Michael J., “ADA Implementation of Concurrent Execution of 
Multiple Tasks in the Strategic and Tactical Levels of the Rational Behavior Model for 
the NPS Phoenix Autonomous Underwater Vehicle (AUV),” M.S. thesis, Naval 
Postgraduate School, Monterey, California 93943, September, 1995. Available at, 
http://www.cs.nps.navy.mil/research/auv/auv_thesisarchive.html 
 
[Jabber 2004] Jabber. http://www.jabber.org Accessed on September 2003. 
 
[JDK142] Java 2 Platform Standard Edition, v1.4.2 (J2SE). Available at 
http://java.sun.com/j2se/1.4.2/download.html. Accessed on September 2004. 
 
[JavaCodeConvention 1999] Java Coding Convention.  Available at 
http://java.sun.com/docs/codeconv/html/CodeConventions.doc8.html. Accessed on 
March 2004. 
 
[JEP] Jabber Enhancement Proposals. http://www.jabber.org/jeps/ Accessed on October 
2003. 
 
[JEP49] JEP-0049: Private XML Storage. http://www.jabber.org/jeps/jep-0049.html 
Accessed on January 2004. 
 
[JEP71] JEP-0071: XHTML-IM. http://www.jabber.org/jeps/jep-0049.html Accessed on 
January 2004. 
 
[JiveSoftware 2003] Jive Software open-source XMPP client library for instant 
messaging and presence. http://www.jivesoftware.com/xmpp/smack/. Accessed on 
September 2003. 
 
[JMS] Sun Java Message Service. http://java.sun.com/products/jms/. Accessed on 
October 2003. 
 
[Mahmoud 2002] Qusay H. Mahmoud. Compressing and Decompressing Data using 
Java. Accessed on February 2002. 
 
[MathML] MathML for mathematics. http://www.w3.org/Math/ Accessed on February 
2004. 
 
[Mozilla 2004] Mozilla Project. http://www.mozilla.org/ Accessed on February 2004. 



193 

 
[MsMQ] Microsoft Message Queuing.  www.microsoft.com/msmq/default.htm Accessed 
on October 2003. 
 
[Netbeans 2004] NetBeans Platform. http://www.netbeans.org. Accessed on January 
2004. 
 
[Oceans 2000] David B. Marco, Anthony J. Healey. Current Developments in 
Underwater Vehicle Control and Navigation: The NPS ARIES AUV, 2000. Available at 
http://web.nps.navy.mil/~me/healey/papers/Oceans2000.pdf 
 
[OSI 2004] Open Source Initiative, Non-Profit Corporation, 2002, “Definition 
and Rationale”, http://www.opensource.org (Accessed February 2004). 
 
[Pentakalos 2001] Odysseas Pentakalos. Java Tip 117: Transfer binary data in an XML 
document. http://www.javaworld.com/javaworld/javatips/jw-javatip117.html   (Accessed 
on January 2004). 
 
[Polycarpou 2001] Marios M. Polycarpou. Ohio State University. Cooperative Control of 
Distributed Multi-Agent Systems. 
 
[RFC 821] RFC 821 - Simple Mail Transfer Protocol. 
http://www.faqs.org/rfcs/rfc821.html (Accessed on December 2003). 
 
[RFC 959] RFC959 - File Transfer Protocol. 
http://www.w3.org/Protocols/rfc959/Overview.html  or 
http://www.faqs.org/rfcs/rfc959.html (Accessed on December 2003). 
 
[RFC 1867] RFC 1867 - Form-based File Upload in HTML. 
http://www.faqs.org/rfcs/rfc1867.html (Accessed on December 2003) 
 
[RFC 2045] RFC 2045 (Base64 Encoding). http://www.ietf.org/rfc/rfc2045.txt (Accessed 
on December 2003). 
 
[RFC 2660] RFC 2660 (Secure HyperText Transfer Protocol) 
http://www.ietf.org/rfc/rfc2660.txt. (Accessed on January 2004). 
 
[RFC 2779] RFC2779 - Instant Messaging / Presence Protocol Requirements. 
http://www.jabber.org/ietf/ (Accessed on January 2004). 
 
[SFTP 2002] Secure FTP 101. 
http://www.intranetjournal.com/articles/200208/se_08_14_02a.html (Accessed on 
January 2004). 
 
[Reimers 1995] Reimers, S. “Towards Internet Protocol Over Seawater: Forward Error 
Correction Using Hamming Codes for Reliable Acoustic Telemetry”, MS Thesis, Naval 



194 

Postgraduate School, Monterey, California. September 1995. 
 
[Rhymbox 2004] RhymBox Jabber Client - Instant Messaging For XMPP/Jabber. 
http://www.rhymbox.com/. Accessed on 15 January 2004. 
 
[Schema 2004] XML Schema. http://www.w3.org/XML/Schema Accessed on February 
2004. 
 
[SensorML] Sensor Markup Language (SensorML) for sensors. 
http://vast.uah.edu/SensorML/ Accessed on February 2004. 
 
[Serin 2003] Serin, E., “Design and Test of the Cross-Format Schema Protocol (XFSP) 
for Networked Virtual Environment”, Master’s Thesis, Naval Postgraduate School, 
Monterey, California, March 2003. 
 
[Shankar 2002] Gowri Shankar. Embed binary data in XML documents three ways. 
http://www-106.ibm.com/developerworks/xml/library/x-
binary/?open&l=136,t=gr,p=xb2b   Accessed on February 2002. 
 
[SVG 2004] Scalable Vector Graphics (SVG). http://www.w3.org/Graphics/SVG/. 
Accessed on January 2004. 
 
[Turner] Roy M. Turner. University of New Hampshire. Handling Unanticipated Events 
in Single and Multiple AUV Systems. 
 
[Turner 2002] Gilles Fauconnier, Mark Turner.  The Way We Think: Conceptual 
Blending and The Mind's Hidden Complexities.  
 
[Websphere] IBM Websphere MQ. http://www-306.ibm.com/software/integration/wmq/    
 
[Wheless] Glen H. Wheless. Old Dominion University. The Use of Collaborative Virtual 
Environments in the Mine Countermeasures Mission. 
 
[XMPP 2004] Extensible Messaging and Presence Protocol (XMPP). 
http://xml.coverpages.org/xmpp.html. Accessed on December 2003. 
 

 [XSL 2004] Extensible Stylesheet Language. http://www.w3.org/TR/NOTE-XSL.htm. 
Accessed on February 2004. 
 
[XML 1999] XML in 10 points, http://www.w3.org/XML/1999/XML-in-10-points 
Accessed on January 2004. 
 
[XML 2004] Extensible Markup Language (XML) 1.0 (Third Edition). 
http://www.w3.org/TR/2004/REC-xml-20040204 Accessed on February 2004. 

 



195 

[XSLT 2004] Extensible Stylesheet Language Transformation. 
http://www.w3.org/TR/xslt. Accessed on February 2004. 

 
[Xalan 2004] Apache Xalan. http://xml.apache.org. Accessed on February 2004. 
 
[X3D] Extensible 3D (X3D) Graphics. http://www.web3d.org/x3d.html Accessed on 
February 2004. 
 
[X3DHints 2004] X3D Scene Authoring Hints. Available at 
http://www.web3d.org/TaskGroups/x3d/translation/examples/X3dSceneAuthoringHints.h
tml#NamingConventions.  Accessed on September 2003. 
 
[XJ3D 2004] The Xj3D Project. http://www.xj3d.org Accessed on February 2004. 
 
[XTC 2004] Don Brutzman, Don McGregor, Daniel A. DeVos and Chin Siong Lee. 
XML-based Tactical Chat (XTC): Requirements, Capabilities and Preliminary Progress, 
January 2004.  Available at 
http://www.movesinstitute.org/xmsf/projects/XTC/XmlTacticalChat2004January28.pdf  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



196 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
THIS PAGE INTENTIONALLY LEFT BLANK 



197 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
Ft. Belvoir, Virginia  
 

2. Dudley Knox Library 
Naval Postgraduate School 
Monterey, California  
 

3. Associate Professor Don Brutzman 
Naval Postgraduate School 
Monterey, California  
 

4. Research Associate Curt Blais 
Naval Postgraduate School 
Monterey, California  
 

5. Research Professor John Hiles 
Naval Postgraduate School 
Monterey, California  
 

6. Associate Professor Tony Healey 
Naval Postgraduate School 
Monterey, California  
 

7. Research Associate Jeff Weekley  
Naval Postgraduate School 
Monterey, California 
 

8. Duane Davis, LCDR USN 
Naval Postgraduate School 
Monterey, California  
 


